

Министерство образования и науки Украины

ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ УНИВЕРСИТЕТ

Т.Б. Никитина

МНОГОКРИТЕРИАЛЬНЫЙ СИНТЕЗ РОБАСТНОГО УПРАВЛЕНИЯ МНОГОМАССОВЫМИ СИСТЕМАМИ

Монография

Харьков ХНАДУ 2013 УДК 685.513.685 ББК 32.965:34.621:36.275 Н 62

Рекомендовано к изданию Ученым советом Харьковского национального автомобильно-дорожного университета (протокол № 4 от 26.12.12 г.)

Рецензенты: Е.А. Игуменцев, д-р техн. наук, профессор, (Инженерно-педагогическая академия); С.В. Епифанов, д-р техн. наук, профессор (Национальный аэрокосмический университет имени М.Е. Жуковского «ХАИ»); В.Д. Дмитриенко, д-р техн. наук, профессор Национальный технический университет «ХПИ)

Н 62 Никитина Т.Б. Многокритериальный синтез робастного управления многомассовыми системами: монография / Т.Б. Никитина. – Харьков : ХНАДУ, 2013. – 432 с.

ISBN 978-966-303-459-1

Монография посвящена многокритериальному синтезу робастного управления многомассовыми системами автоматического управления на основе математических моделей и методов зекторной оптимизации показателей качества.

Сформулирована задача многокритериального синтеза ислинейного робастного управления многомассовыми системами и показана возможность ее решения на основе концепции функционально множественной принадлежности вектора состояния, что позволяет удовлетворить разнообразным требованиям, которые предъявляются к работе многомассовых систем в различных режимах. Показана эквивалентность решения задачи синтеза нелинейного робастного управления на осповании концепции функционально множественной принадлежности вектору состояния путем решения уравнения Гамильтона-Якоби-Беллмана-Айзекса. Обоснован и разработан метод выбора весовых матриц в критериях качества оптимального управления и матриц, с помощью которых формируется вектор оптимизируемых параметров при робастном управлении путем решения задачи нелинейного программирования, что позволяет удовлетворить требования, которые предъявляются к синтезированной системе.

Для научных и инженерно-технических работников, аспирантов, студентов.

УДК 685.513.685 ББК 32.965:34.621:36.275

СОДЕРЖАНИЕ

НРЕДИСЛОВИЕ	
ГЛАВА 1. ПРОБЛЕМА УПРАВЛЕНИЯ МНОГОМАССОВЫМИ	
ОБЪЕКТАМИ5	
1.1. Многомассовые объекты управления	
1.2. Современное состояние методов управления	
многомассовыми системами	
1.3. Требования, предъявляемые к системам управления	
ГЛАВА 2. МАТЕМАТИЧЕСКИЕ МОДЕЛИ МНОГОМАССОВЫХ	
СИСТЕМ С УЧЕТОМ НЕОПРЕДЕЛЕННОСТЕЙ31	
2.1. Математическая модель индивидуальных приводов	
прокатных валков с синхронными двигателями и с учетом	
их взаимного влияния через прокатываемый металлй 31	
2.2. Математические модели двухканальных систем	
с раздельной нагрузкой	
2.3. Математические модели обмоточных машин 70	
2.4. Математические модели трехопорных управляемых платформ 82	
2.5. Математические модели дискретно-континуальных	
объектов управления	
2.6. Математические модели внешних воздействий	
многомассовых систем)
ГЛАВА 3. МНОГОКРИТЕРИАЛЬНЫЙ СИНТЕЗ	
ОПТИМАЛЬНОГО УПРАВЛЕНИЯ МНОГОМАССОВЫМИ	
ЭЛЕКТРОМЕХАНИЧЕСКИМИ СИСТЕМАМИ11	į
3.1. Обоснование возможности многокритериального	
синтеза оптимального непрерывного управления	
многомассовыми электромеханическими системами111	Ĺ
3.2. Многокритериальный синтез приближенно-оптимального	
непрерывного управления многомассовыми системами	
с аналитическими нелинейностями	}
3.3 Многокритериальный последовательный синтез	
многомассовых систем с итеративной структурой	
и с аналитическими нелинейностями	1
3.4. Многокритериальный синтез приближенно оптимального	
цифрового управления многомассовыми системами	
с аналитическими нелинейностями	j

	3.5. Многокритериальный последовательный синтез цифрового
	управления многомассовыми системами с итеративной
	структурой и с аналитическими нелинейностями
	3.6. Ограничение управления и переменных состояния
	многомассовых систем при управлении по вектору состояния175
г па	ВА 4. МНОГОКРИТЕРИАЛЬНЫЙ СИНТЕЗ РОБАСТНОГО
	АВЛЕНИЯ МНОГОМАССОВЫМИ СИСТЕМАМИ186
	4.1. Обоснование возможности многокритериального синтеза
	нелинейного робастного управления многомассовыми системами 186
	4.2. Многокритериальный синтез нелинейного робастного
	управления при неполном векторе состояния
	4.3. Многокритериальный синтез приближенного нелинейного
	робастного управления для систем с аналитическими
	нелинейностями
	4.4. Многокритериальный синтез цифрового робастного
	управления многомассовыми системами
	4.5. Многокритериальный синтез робастных систем
	управления при случайных внешних воздействиях273
	ВА 5. МНОГОКРИТЕРИАЛЬНЫЙ ПАРАМЕТРИЧЕСКИЙ
	ТЕЗ РОБАСТНОГО УПРАВЛЕНИЯ МНОГОМАССОВЫМИ
СИС	ТЕМАМИ288
	5.1. Многокритериальный параметрический синтез
	нелинейного робастного управления
	5.2. Многокритериальный параметрический синтез цифрового
	робастного управления многомассовыми системами
	5.3. Формирование нелинейной схемы компромисса при
	многокритериальном синтезе многомассовых систем
	5.4. Алгоритмы нелинейного программирования
	для решения задач многокритериального синтеза
	нелинейного робастного управления
	5.5. Результаты решения задач многокритериального
	параметрического синтеза робастного управления многомассовыми системами
	многомассовыми системами
ГЛА	ВА 6. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ
дин	АМИЧЕСКИХ ХАРАКТЕРИСТИК СИНТЕЗИРОВАННЫХ
СИС	TEM360
	6.1. Разработка исследовательского стенда двухмассовой
	электромеханической системы
	6.2. Экспериментальное исследование динамических
	характеристик стенда двухмассовой электромеханической
	системы
CHE	ICOK HHTEPATVPIJ 380

Никитина Татьяна Борисовна доктор технических наук, заведующая кафедрой общетехнических дисциплин Харьковского национального автомобильно-дорожного университета

НІКІТІНА Тетяна Борисівна

БАГАТОКРИТЕРІАЛЬНИЙ СИНТЕЗ РОБАСТНОГО КЕРУВАННЯ БАГАТОМАСОВИМИ СИСТЕМАМИ

Монографія

(російською мовою)

Відповідальний за випуск Т.А. Шмоніна

В авторській редакції

ВИЛАВНИЦТВО

Харківського національного автомобільно-дорожнього університету Видавництво ХНАДУ, 61002, Харків-МСП, вул. Петровського, 25. Тел. /факс: (057) 700-38-64; 707-37-03, e-mail: rio@khadi.kharkov.ua

Свідоцтво Державного комітету інформаційної політики, телебачення та радіомовлення України про внесення суб'єкта видавничої справи до Державного реєстру видавців, виготівників і розповсюджувачів видавничої продукції, серія № ДК №897 від 17.04 2002 р.

Підписано до друку 11 03.2013 р. Формат. 60х84 1/16. Папір офсетний. Гарнітура Times New Roman Cyr. Віддруковано на ризографі. Умовн. друк. арк. 27.0. Обл.-вид арк. 19,63. Замовлення № 11/03/13. Наклад 300 прим. Ціна договірна.

> Віддруковано ФОП Полов О.С. Свідоцтво В00 № 934353 видане Виконавчим комітетом Харківської міської ради 01.04.2005 р.