Содержательный модуль 4



# "Электротехнические материалы" Лекция 10

Полупроводниковые материалы. Методы получения и легирования. Методы Методы получения р-n-переходов

Lec\_10\_el\_mat\_1MM\_LNA\_09-04-2015

Доцент Лалазарова Н.А.

## Codepakanne



10.1. Методы получения сверхчистых полупроводниковых материалов. Химические методы



10.2. Кристаллофизические методы

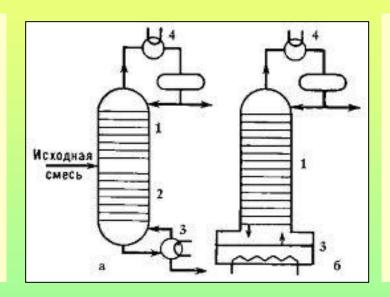


10.3. Методы легирования полупроводниковых материалов



10.4. Методы получения p-n – переход




Задания для самостоятельной работы



### 10.1. МЕТОДЫ ПОЛУЧЕНИЯ СВЕРХЧИСТЫХ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ. ХИМИЧЕСКИЕ МЕТОДЫ

Химические методы обеспечивают высокую степень очистки полупроводниковых материалов.

Дистилляция (испарение жидкой фазы) удаляет легкоиспаряющиеся примеси.



Ректификация (многократное испарение и конденсация) — примеси, имеющие невысокие температуры плавления, испарения и большой интервал жидкого состояния.

Сублимацией (испарением твёрдой фазы) очищают от механических примесей и газов и получают монокристалл, применяя ампулу с концом конической формы.



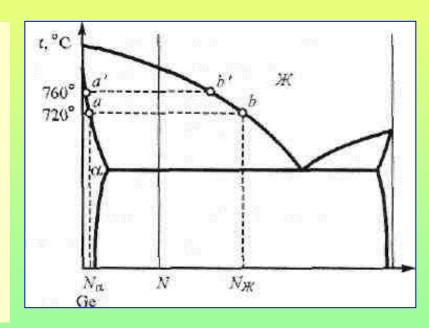
## Контрольные вопросы

1. Какие методы получения сверхчистых полупроводниковых материалов относятся к химическим?

2. В чём суть дистилляции?

3. В чём суть ректификации?




Кристаллофизические методы очистки основаны на различной растворимости примесей в твёрдой и жидкой фазах. В процессе кристаллизации в твёрдой фазе примесей гораздо меньше, чем в жидкой фазе. Распределение примеси между фазами характеризуется коэффициентом распределения К.

Коэффициент распределения *К:* 

$$K=N_{\alpha}/N_{\pi}$$

где  $N_{\alpha}$  - количество примесей в твёрдой фазе;

 $N_{\rm ж}$  – количество примесей в жидком растворе.



Таким образом, если *К* < 1, то при кристаллизации примесь скапливается в жидкой фазе.

**Диаграмма состояния системы** германий - примесь

Это явление легло в основу нескольких методов очистки.



#### Метод нормальной направленной кристаллизации

Этот метод применяют для очистки германия. Химически очищенный полупроводник помещают в ампулу или в графитовую лодочку, которую перемещают в печи, имеющей по длине большой градиент температур.

В начале процесса полупроводник расплавляется, а затем часть его, попадая в зону печи с пониженной температурой, кристаллизуется.



После кристаллиза- ции конец кристалла, обогащённый примесью, отрезают.

Если кристаллизация начинается с острого конца ампулы, то растет очищенный монокристалл. Примеси, у которых K < 1, сохраняются в жидкой фазе.

#### Метод зонной очистки

Этот метод применяют для очистки германия. При методе зонной очистки пруток химически очищенного германия помещают в вакуум и при помощи индуктора ТВЧ расплавляют узкую зону, в которой и скапливаются примеси.

Лодочку (или индуктор) перемещают с постоянной скоростью, что обеспечивает постоянство коэффициента распределения.



Схема установки зонной очистки: 1 – затравка, 2 – расплавленная зона

После очистки конец прутка, обогащённый примесью, отрезают.

Очистку можно повторять многократно.



#### Метод вытягивания монокристалла из расплава

Этот метод применяют для очистки германия от примесей, у которых коэффициент K=1. При медленном росте кристалла, лишенного дефектов, атомам примеси трудно внедряться в кристаллическую решетку основного элемента, и монокристалл получается химически чистым.

Германий помещают в тигель и расплавляют в вакууме. В расплав опускают затравку, которая представляет собой брусок сечением 5×5 мм.

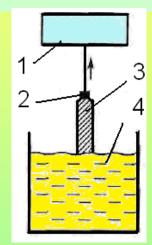
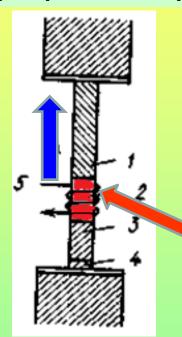



Схема установки для выращивания монокристалла: 1 - вытягивающее устройство; 2 - затравка; 3 – монокристалл; 4 – расплав полупроводника


Затравку слегка оплавляют для устранения остаточных напряжений, возникших при механической обработке, и медленно начинают вытягивать из расплава, который вследствие адгезии приподнимается над поверхностью, охлаждается и затвердевает.

Скорость вытягивания должна быть небольшой – порядка 0,1 мм/с. Затравка и тигель вращаются в разные стороны (n>60об/мин) или в одну сторону, но с разной скоростью.

#### Метод бестигельной зонной очистки

Для кремния рассмотренные методы не приемлемы из-за его высокой химической активности и высокой температуры плавления (t<sub>пл</sub>=1414°C). При такой высокой температуре кремний загрязняется материалом тигля.

Поэтому применяют метод бестигельной зонной очистки. Пруток технически чистого кремния укрепляют вертикально. В нижней части прутка укрепляют затравку монокристалла.



Нагрев производят индуктором ТВЧ, который слегка оплавляет затравку, а затем медленно поднимается вверх. Примеси скапливаются в жидкой расплавленной зоне и перемещаются к верхнему концу прутка, который после окончания процесса отрезают. Процесс повторяют многократно.

Схема установки для бестигельной зонной очистки кремния: 1 – поликристалл, 2 – расплавленная зона, 3 – монокристалл, 4 – затравка, 5 – индуктор

Таким способом очищают прутки небольшого размера. Ширина расплавленной зоны для лучшей очистки должна быть небольшой.

#### Метод эпитаксии

Эпитаксия – ориентированное наращивание одного кристаллического вещества на поверхности другого кристалла, служащего подложкой.

Метод эпитаксии позволяет создавать (более высокоомные чистые) пленки кремния и германия, исключает трудную технологическую операцию разрезки монокристаллов на тонкие пластины;

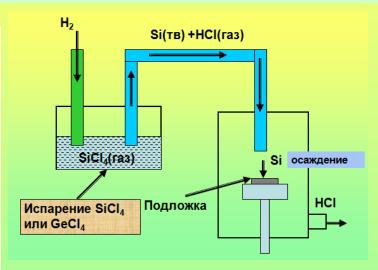



Схема установки для выращивания эпитаксиальных плёнок

дает возможность получать сложные полупроводниковые материалы (например, карбид кремния),

производство которых в виде объемных монокристаллов затруднено вследствие высокой стоимости процесса.

#### Метод эпитаксии

Эпитаксиальные пленки выращивают на подложке из монокристалла того же или другого материала.

В первом случае эпитаксиальный слой при правильной технологии становится естественным продолжением подложки.

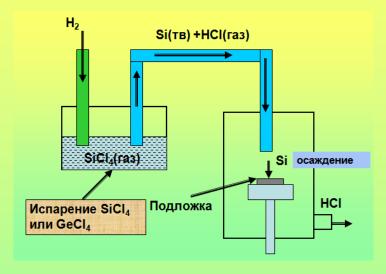


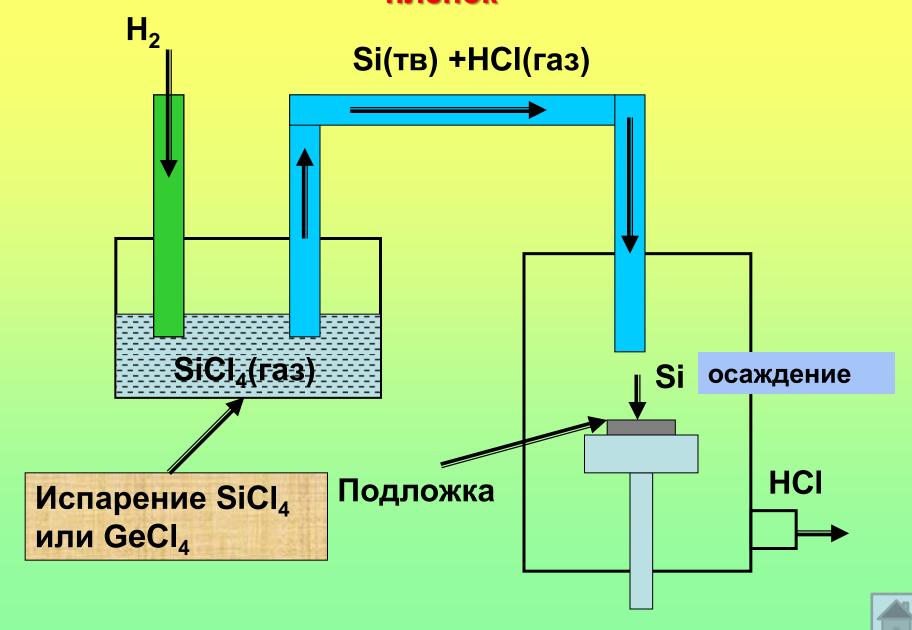

Схема установки для выращивания эпитаксиальных плёнок

Если подложка из другого материала, то эпитаксиальная пленка полупроводника будет монокристаллической только в том случае,

если между кристаллическими решетками имеется структурное и размерное соответствие, т.е. межатомные расстояния будут отличаться не более чем на 25 %.

#### Метод эпитаксии

Наиболее распространенный вариант промышленной технологии получения кремниевых эпитаксиальных слоев базируется на процессе водородного восстановления тетрахлорида кремния в соответствие с реакцией:


Реакция протекает при температуре порядка 1200°С. Пары чистого полупроводника осаждаются на слабо подогреваемой подложке.

$$SiCI_{4(\Gamma a3)} + 2H_{2(\Gamma a3)}$$
  
 $\leftrightarrow Si_{(TB)} + 4HCI_{(\Gamma a3)}$ 

Такой метод используют ДЛЯ получения **ВЫСОКООМНЫХ** пленок германия и кремния на монокристаллических низкоомных подложках. Ha практике используются слои от 2 до 20 MKM.

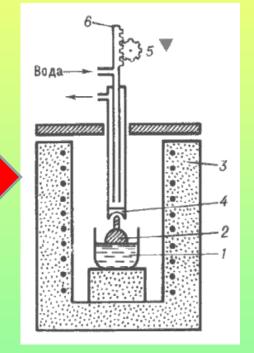
Этот же метод положен в основу получения легированных и сложных полупроводниковых веществ. Помимо хлоридов основного элемента в камеру вводят хлориды либо иные соединения легирующих веществ.

#### Схема установки для выращивания эпитаксиальных плёнок



### Контрольные вопросы

- 1. На чём основаны кристаллофизические методы?
- 2. В чём суть метода нормальной направленной кристаллизации?
- 3. В чём суть зонной очистки?


- 3. В каких случаях применяют бестигельную зонную очистку?
- 3. Что такое эпитаксия?



## 10.3. МЕТОДЫ ЛЕГИРОВАНИЯ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ

Для получения в монокристалле определённой проводимости применяют специальное легирование очищенных германия и кремния. Легирование осуществляют методом вытягивания монокристалла из расплава очищенного полупроводника с введенной легирующей примесью, методом зонного выравнивания, методом эпитаксии.

Метод вытягивания монокристалла из расплава состоит в добавлении легированного полупроводника в расплав в процессе вытягивания.



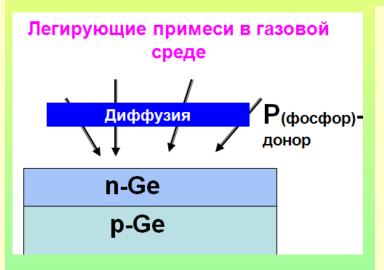
Метод зонного выравнивания – равномерно вводят легирующую примесь в расплавленную зону.



Схема установки для выращивания монокристаллов по методу Чохральского: 1 - тигель с расплавом, 2 - кристалл, 3 - печь, 4 - холодильник, 5,6 - механизм вытягивания.

## Контрольные вопросы

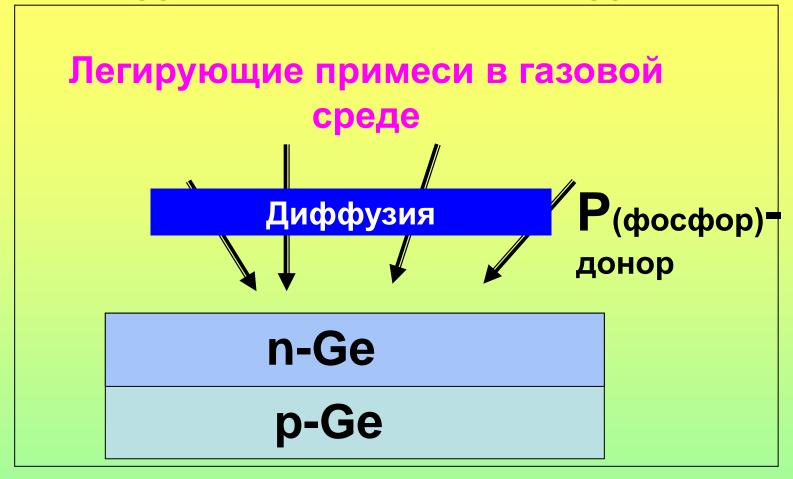
1. Какие методы используют для легирования полупроводниковых материалов?


2. Как осуществляют легирование при использовании метода зонного выравнивания?



## 10.4. МЕТОДЫ ПОЛУЧЕНИЯ p-n – ПЕРЕХОДОВ

В первую очередь к полупроводниковым приборам относятся диоды (выпрямители) и триоды (усилители). Основной частью полупроводниковых приборов являются р-n-переходы, то есть контактные соединения двух полупроводников, из которых один обладает электронной проводимостью, а другой – дырочной.

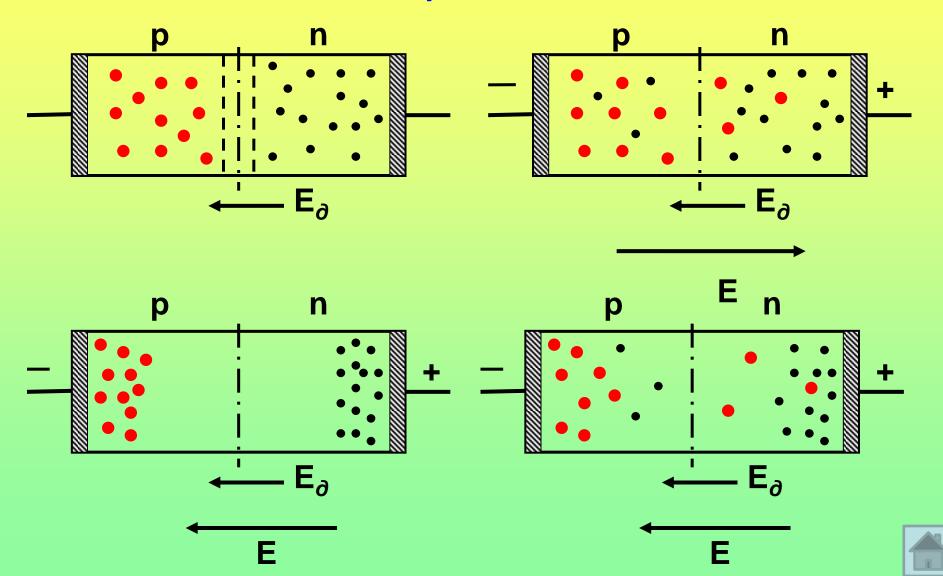

Для получения p-n-переходов используют сплавный, диффузионный и сплавно-диффузионный методы и ионное легирование в тлеющем разряде.



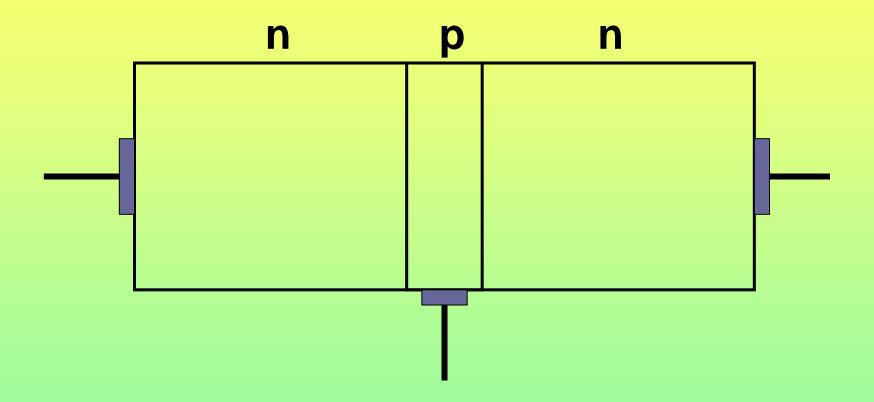
Диффузионный метод. Легирующая примесь попадает в пластинку полупроводника в результате диффузии из газовой фазы, в состав которой входит легирующая примесь.

Этот метод даёт хорошую воспроизводимость основных характеристик, что позволяет его использовать в серийном производстве.

#### ДИФФУЗИОННЫЙ МЕТОД




Диффузионный метод даёт возможность вводить примеси совместно, получая p-n-переходы на различной глубине. Этот метод позволяет получать сразу несколько переходов в одной пластине. В этом случае газовая среда должна содержать и донорную и акцепторную примеси.



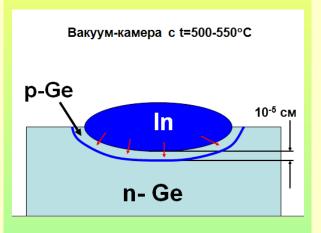

## p-n – переходы – основа полупроводниковых выпрямителей и усилителей

#### Диоды – выпрямление тока



#### Полупроводниковый триод транзистор




Усиление тока

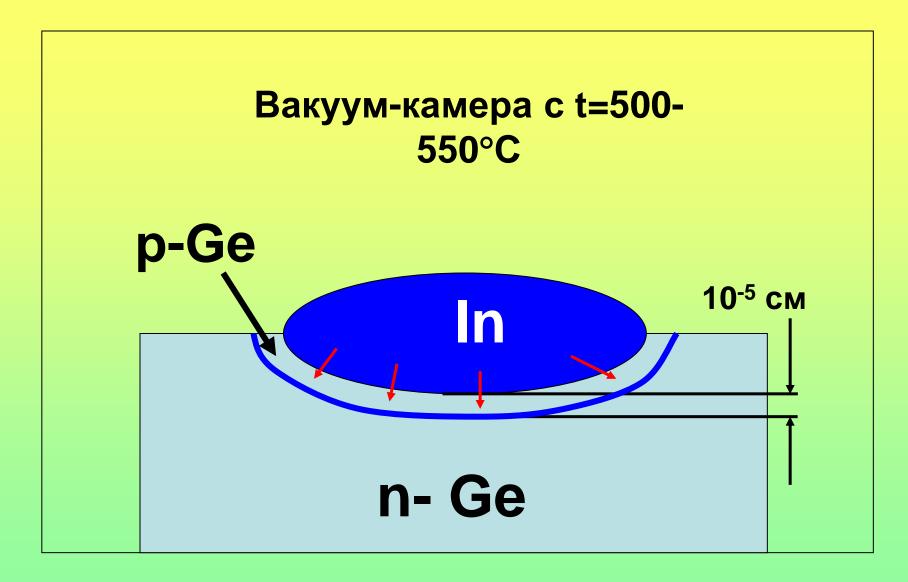


#### **МЕТОДЫ ПОЛУЧЕНИЯ p-n – ПЕРЕХОДОВ**

Сплавный метод заключается в том, что на пластинку n-полупроводника накладывают кусочек элемента III группы. Например, на пластинку n-германия можно поместить кусочек индия.

Если нагревать заготовку в вакууме до 500°С, то индий расплавится и за счет растворения германия в пластинке появится лунка, заполненная расплавом.



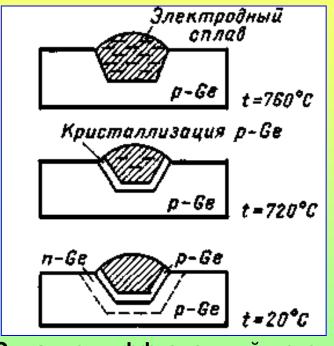

Сплавный метод

В процессе охлаждения начинается кристаллизация германия, в решетку которого попадают атомы индия — акцепторы. Образуется слой р-германия, в котором концентрация индия возрастает по мере приближения к поверхности.

Между n-германием и слоем p-германия возникает p-n -переход.



#### СПЛАВНЫЙ МЕТОД

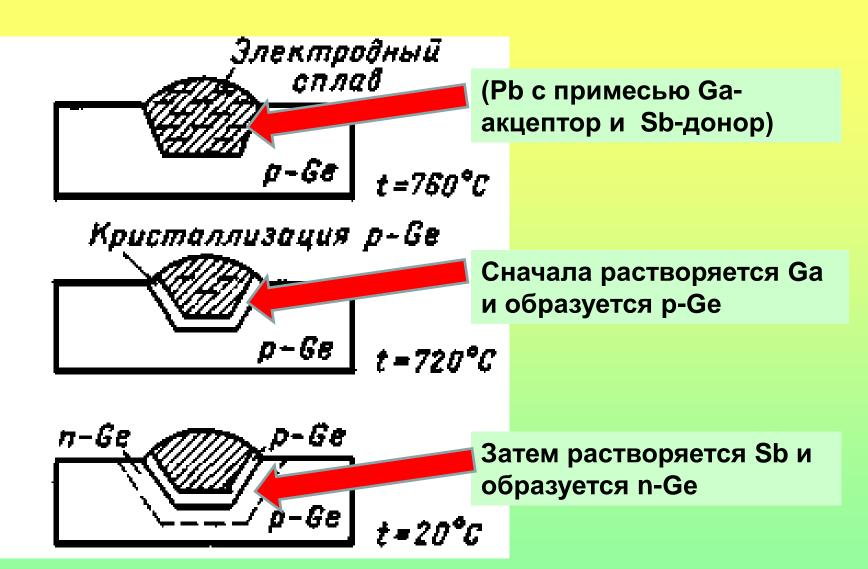





#### **МЕТОДЫ ПОЛУЧЕНИЯ p-n – ПЕРЕХОДОВ**

сплавно-диффузионном методе пластину германия на pсплава проводимостью помещают шарик И3 на основе свинца C примесью галлия (акцептор) и сурьмы (донор) и нагревают до 760°C.

При этой температуре сплав расплавляется, и примесь растворяется в германии. После выдержки (2ч) температуру понижают до 720°С, и растворимость увеличивается.




Сплавно-диффузионный метод

Германий захватывает небольшое количество донорной И акцепторной примесей, но в большей СВЯЗИ растворимостью в германии галлия, чем сурьмы, эта зона германия, обогащённая примесью, сохраняет р-проводимость.

В процессе длительной (10 ч) выдержки при 720°С происходит диффузия галлия и сурьмы из образовавшейся р-зоны в основную пластинку р-германия. Благодаря большей диффузионной подвижности сурьмы в пластинке германия создаётся зона n-проводимости, что в итоге приводит к образованию двух переходов типа p-n-p.

#### СПЛАВНО-ДИФФУЗИОННЫЙ МЕТОД





### Контрольные вопросы

 В чём суть сплавного метода получения p-n переходов?

2. В чём суть диффузионного метода получения p-n - переходов?



#### Задания для самостоятельной работы

- Изучить сущность и применение химических методов получения сверхчистых полупроводниковых материалов.
- 2. Ознакомиться с применением кристаллофизических методов получения сверхчистых полупроводниковых материалов.
- 3. Ознакомиться с применением метода эпитаксии для легирования полупроводниковых материалов.
- 4. Сравнить диффузионный и сплавный метод легирования.
- 5. Сравнить метод вытягивания из расплава и метод нормальной направленной кристаллизации.



## Racieada texholorun metallob n maternalobeaerna

## Janasapoba Hatanka Alekcebka

E-mail: lalaz1991@mail.ru

г. Харьков, ул. Петровского, 25, ХНАДУ, КАФЕДРА ТМ и М Tel.(8-057)707-37-92

