Содержательный модуль 5

"Электротехнические материалы"

Лекция 14

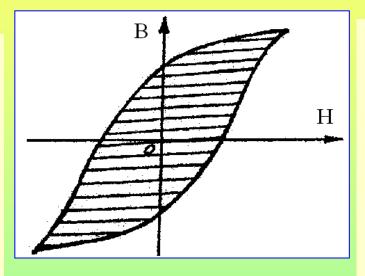
Магнитотвёрдые материалы

Lec_14_el_mat_1MM_LNA_07-05-2015

Доцент Лалазарова Н.А.

Codepakanne

→ 14.2. Классификация МТМ по способу изготовления


14.3. Материалы со специальными магнитными свойствами

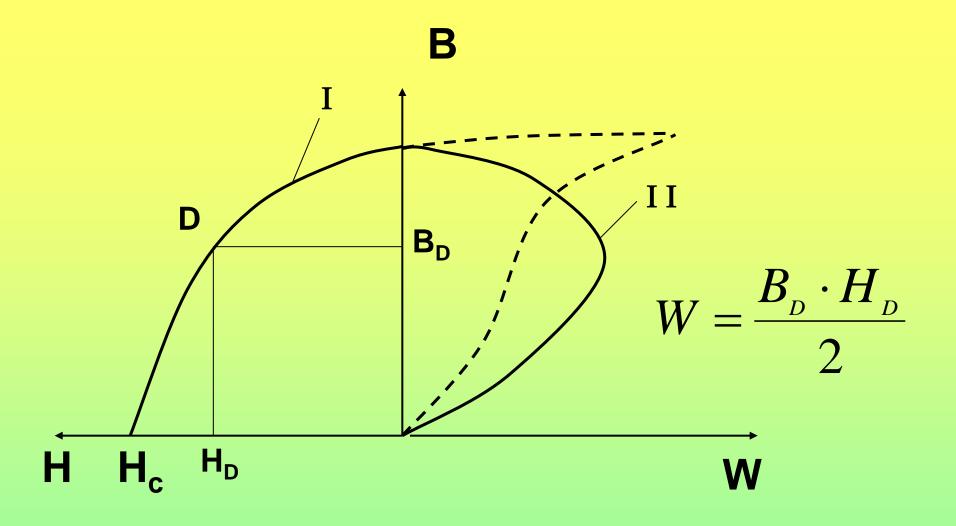
14.1. МАГНИТОТВЁРДЫЕ МАТЕРИАЛЫ: ОСНОВНЫЕ ТРЕБОВАНИЯ

Основные требования к магнитотвёрдым материалам:

- 1) Большие значения B_r, H_c, W_{max}.
- 2) Широкая петля гистерезиса.
- 3) Большие потери на перемагничивание.

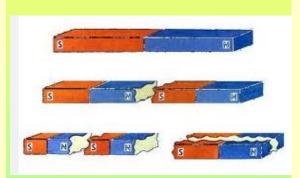
 $W_{\text{max}} = B \cdot H/2$

Магнитная мощность (энергия) определяется как половина произведения величины магнитной индукции на величину напряжённости магнитного поля:


МТМ намагничиваются в сильных полях (H>1000кA/м), имеют большие потери при перемагничивании, большую остаточную индукцию: B_r=0,5-1,0 Тл и коэрцетивную силу H_c<560 кA/м.

Кривые размагничивания и магнитной энергии в воздушном зазоре постоянного магнита

Кривые размагничивания и магнитной энергии в воздушном зазоре постоянного магнита



МАГНИТОТВЁРДЫЕ МАТЕРИАЛЫ

Размагничивание материалов связано с теми же процессами, что и намагничивание: смещение доменной стенки и вращение векторов намагничивания. Поэтому любые факторы, задерживающие эти процессы, будут затруднять размагничивание.

Основные требования к составу и структуре магнитотвёрдых материалов.

1) Преимущественное применение имеют сплавы, а не чистые металлы.

- 2) Образование твёрдого раствора повышает магнитную твёрдость (то есть H_c) незначительно;
- 3) Образование второй фазы при легировании активно повышает H_c .
- 4) Напряжения в решётке, измельчение зерна и другие отклонения от равновесного состояния вызывают повышение H_c , так как затрудняется смещение доменных стенок и вращение векторов намагниченности.

Контрольные вопросы

- 1. Назовите основные требования к составу магнитотвёрдых материалов.
- 2. Назовите основные требования к структуре магнитотвёрдых материалов.

3. Что такое магнитная мощность?

14.2. КЛАССИФИКАЦИЯ МТМ ПО СПОСОБУ ИЗГОТОВЛЕНИЯ

ДЕФОРМИРУЕМЫЕ МТМ

1) Высокоуглеродистые стали: У10...У13. После закалки и низкого отпуска они имеют следующие свойства: B_r =0,80-0,85 Тл, H_c =60-65 A/м.

Достоинства:

- 1) низкая стоимость;
- 2) технологичность в отношении обработки давлением и резанием.

Недостатки:

- 1) стали боятся ударов, вибраций, то есть имеет место магнитное старение,
- 2) небольшая магнитная мощность W<2,4 КДж/м³.
- 3) в магнитных материалах имеет место старение, которое заключается в ухудшении магнитных свойств со временем. Различают магнитное и структурное старение.

ДЕФОРМИРУЕМЫЕ МТМ

2) Легированные мартенситные стали. Термообработка: закалка и низкий отпуск.

Хромистые стали:

легирование повышает прокаливаемость.

Свойства сталей: Hc=4,4-4,8 A/м, Br=0,9-0,95 Тл.

Марки сталей: EX, EX3 (буква E обозначает, что это магнитотвёрдый материал).

Вольфрамовая сталь ЕВ6.

Вольфрам и хром образуют карбиды, что способствует повышению коэрцитивной силы.

Достоинства:

1) стойкость к ударам.

Недостатки:

1) нестабильные магнитные свойства при повышении температуры. Свойства стали **EB6**: Hc=4,4-4,8 A/м, Br=1 Тл

ДЕФОРМИРУЕМЫЕ МТМ

3) Кобальтовые стали имеют более высокие магнитные свойства (Hc=16Tл, Hc=1,1Tл), чем хромистые и вольфрамовые.

Они бывают:

1) низкокобальтовые(9-10%Со),
2) среднекобальтовые (17-20%Со),
3) высококобальтовые(40-42%Со).

Увеличение количества кобальта способствует повышению магнитной мощности и хрупкости.

Марки сталей: **EX9K15M2**, **EX9K15M**.

Достоинства: мало подвержены старению от ударов.

Недостатки: дороговизна, дефицитность Со, сложность термической обработки и большая твёрдость.

Применяются для изготовления магнитов осциллографов, динамиков, магнето.

Магнитные свойства деформируемых сплавов для изготовления магнитов

Сплав	Марка и состав	W _{max} , кДж/м	Н _с , кА/м	Br, Тл
Хромко	30XK25 (45%Fe, 30%Cr, 25%Co	7,7	56	0,8
Викаллой	52%Co, 35%Fe, 13%V	8,8	28	0,6
Кунико	50%Cu, 21%Ni, 29%Co	6,5	36	0,53
Кунифе	60%Cu, 20%Ni, 20%Fe	6,7	47	0,55
Плати- накс	78%Pt, 22%Co	40	320	0,8

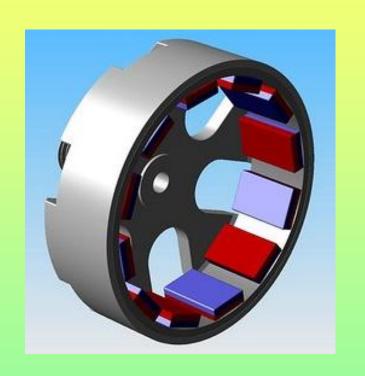
ЛИТЫЕ МТМ

Литые MTM системы Fe-Ni-Al

Термическая обработка: 1)закалка - нагрев до 1250-1280°С и охлаждение с определённой для каждого сплава скоростью; 2)отпуск при температуре 580-600°С.

Недостатки:

дороговизна, дефицитность Со, сложность термической обработки и большая твёрдость.


Сплавы тверды, хрупки и плохо поддаются деформации, поэтому магниты из них изготавливают литьём. После литья магниты только шлифуют.

Для получения магнитов применяют методы литья в песчаные формы, по выплавляемым моделям, в металлические формы, т. е. в кокиль. Наибольшее распространение имеет литье в песчаные формы.

ЛИТЫЕ МТМ

Литые MTM системы Fe-Ni-Al

- 1) Для создания магнитной текстуры сплавы типа альнико (при содержании Со>18%) подвергают термомагнитной обработке:
- нагрев до 1300°C и охлаждение в магнитном поле, При обработке в магнитном поле αфаза выделяется в виде частиц, ориентированных вдоль поля.

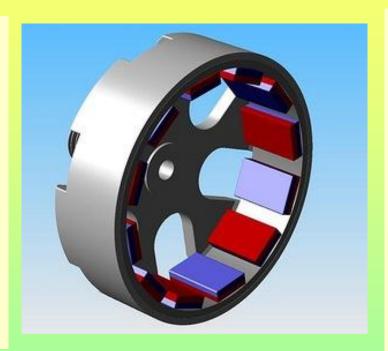
2) Кристаллографическая текстура образуется в случае:

- направленной кристаллизации отливки в магнитном поле, при этом возникают столбчатые кристаллы (длиной до 300 мм), растущие в определённом направлении.

МАРКИ ЛИТЫХ МТМ

Наибольшее распространение в технике получили сплавы ЮНД4, ЮНДК15, ЮНДК24 и др. (Ю - алюминий, Н – никель, Д – медь, К – кобальт, Т – титан, Б - ниобий) и другие (таблица).

Свойства литых МТМ


Сплав	W, кДж/м ³	Н _с , кА/м	В _r , Тл
ЮНД8	5,1	44	0,6
ЮНДК18	9,7	55	0,9
ЮНДК35Т5Б	16	96	0,75

ПОРОШКОВЫЕ МТМ

Магниты простой формы и малых размеров получают из магнитотвердых порошков.

Для производства металлокерамических магнитов используют порошки железоникельалюминиевых сплавов исплавов типа кунико, кунифе.

Металлокерамичес кие магниты получают спеканием порошков железа, никеля и алюминия при температуре 1300°С в защитной атмосфере (аргона).

Используют мелкодисперсные порошки. Спеченные материалы несколько уступают по магнитным свойствам литым сплавам, однако этим методом можно изготовить очень точные мелкие магниты.

МАРКИ МЕТАЛЛОКЕРАМИЧЕСКИХ МТМ

Сплав	W, кДж/м ³	Н _с , кА/м	В _r , Тл
MMK1	3	24	0,6
ММК6	5	44	0,65
ММК7	10,5	44	0,95
MMK11	16	118	0,7

Марку сплава расшифровывают следующим образом: ММК – магнитный металлокерамический сплав, цифра – порядковый номер. Сплав ММК1-ММК6 изотропные, сплавы ММК7-ММК11 – анизотропные.

Для получения высокого уровня магнитных свойств спеченные сплавы подвергают термической и термомагнитной обработке, как и литые сплавы.

МАГНИТОТВЕРДЫЕ ФЕРРИТЫ

Магнитотвёрдые ферриты получают спеканием порошков оксидов Fe, Ba и Co.

Для изготовления постоянных магнитов используют феррит бария $BaO\cdot 6Fe_2O_3$ (бариевые магниты) и феррит кобальта $CoO\cdot Fe_2O_3$ (вектолит).

Из бариевых ферритов изготавливают магниты для различных акустических приборов (громкоговорителей, микрофонов), фокусирующих систем.

Феррит	Состав	W, кДж/м³	Н _с , кА/м	В _r , Тл
6БИ240	Ba·6Fe ₂ O ₃	3	125	0,19
10KA165	CoO·6 Fe ₂ O ₃	5	143	0,23

Магниты из ферритов в 2-3 раза легче, чем из сплавов ЮНДК, что имеет большое значение для авиационного материаловедения. По магнитным свойствам они несколько уступают литым сплавам Fe-Ni-Al, но их можно использовать в высокочастотном поле без тепловых потерь.

МАГНИТОТВЕРДЫЕ ФЕРРИТЫ НА ОСНОВЕ РЗМ

Первая одна или две цифры в марке обозначают 2W_{max}. Буквы обозначают металл в оксиде, последние цифры – коэрцитивную силу, определённую по намагниченности.

Нашли применение ферриты на основе оксидов редкоземельных металлов: самария, празеодима, иттрия. Эти сплавы имеют большую коэрцитивную силу, что позволяет применять их для изготовления миниатюрных магнитов точных приборов,

Магнитные свойства спеченных сплавов на основе редкоземельных металлов (ГОСТ 21559-76)

Марка	Химический	ω_{max}	Hc _в	Hc _м	B _r ,
сплава	состав, %	кДж/м ³	кА/м		Тл
КС37	37Sm; 63Co	55	540	1300	0,77
КС37А	37Sm; 63Co	65	560	1000	0,82
КСП37	37(Sm+Pr); 63Co	65	520	800	0,85
КСП37А	37(Sm+Pr); 63Co	72,5	500	640	0,9

Контрольные вопросы

- 1. На какие группы по способу изготовления делятся магнитотвёрдые материалы?
- 2. Какие материалы относятся к деформируемым?

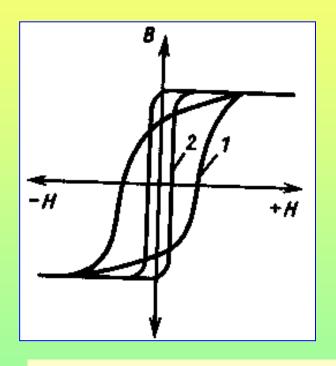
3. Какие материалы относятся к литым?

3. Какие материалы относятся к порошковым?

14.3. МАТЕРИАЛЫ СО СПЕЦИАЛЬНЫМИ МАГНИТНЫМИ СВОЙСТВАМИ

Они разрабатываются для конкретных узких областей применения и имеют наивысшие значения одного или двух магнитных параметров.

Магнитные материалы с прямоугольной петлей гистерезиса (ППГ) применяют устройствах автоматики (запоминающие устройвычислиства), тельной техники, в аппаратуре телефонной связи.


Широкое применение в вычислительной технике получили ферриты с ППГ из окислов марганца и магния: MgO·3MnO·Fe₂O₃, а также полиферриты, содержащие кроме перечисленных оксиды Zn, Ca, Li с Кп=0,90–0,93, пермаллои с ППГ.

Коэффициент прямоугольности определяется как:

МАГНИТНЫЕ МАТЕРИАЛЫ С ПРЯМОУГОЛЬНОЙ ПЕТЛЕЙ ГИСТЕРЕЗИСА

Способы получения материала с прямоугольной петлёй гистерезиса:

1)создание кристаллографической текстуры. Кристаллографитекстура ческая создаётся посредством холодной пластической прокатки с боль-ШИМИ степенями обжатия.

1) создание магнитной текстуры. Магнитная текстура — путём охлаждения материала при закалке в магнитном поле (термомагнитная обработка).

В вычислительной технике нашли применение ферриты с ППГ на основе оксидов магния и марганца: пермаллои 50НП; 65НП.

ТЕРМОМАГНИТНЫЕ СПЛАВЫ

К термомагнитным относятся сплавы на основе Ni-Cu, Fe-Ni и Fe-Ni-Cr.

Они применяются для компенсации температурной погрешности в установках, ВЫЗЫваемой изменением индукции постоянных магнитов или сопротивления проводов в магнитоэлектрических приборах по сравнению с тем значением, при котором производилась градуировка.

Для этих ферромагнетиков точка Кюри лежит между 0 и 100°С в зависимости от добавок легирующих элементов.

Сплав Ni-Cu при содержании 30% Cu может компенсировать погрешности для пределов температуры от 20 до 80°C, при 40% - от –50 до +10°C. Сплав Fe-Ni (30-35%) перестаёт быть ферромагнитным при +100°C.

МАТЕРИАЛЫ С БОЛЬШИМ КОЭФФИЦИЕНТОМ МАГНИТОСТРИКЦИИ

Сплавы с большим коэффициентом магнитострикции применяют для:

- 1) сердечников преобразователей магнитных колебаний в ультразвуковые,
- 2) для изготовления звукозаписывающих головок,
- 3) в установках для обработки твёрдых материалов и др.

- а) Большой магнитострикцией обладает никель λ_s =- 37·10⁻⁶.
- б) Высокой магнитострикцией обладает сплав железа с 13%AI (λ_s = $45\cdot10^{-6}$).
- в) Более высоким коэффициентом магнтострикции обладают сплавы железа с 50% Со (λ_s =+70·10⁻⁶), которые используются для преобразователей большой мощности.
- г) Сплав железа с платиной обладает наиболее высоким коэффициентом магнитострикции (λ_s =204·10⁻⁶), но он весьма дорог.

Контрольные вопросы

- 1. Как создают прямоугольную петлю посредством получения кристаллографической текстуры?
- 2. Для чего предназначены термомагнитые сплавы?

3. Назовите области применения сплавов с большим коэффициентом магнитострикции.

Radeana temojorun metajijos n maternajoseaenia

Janasapoba Hatanya Afektebila

E-mail: lalaz1991@mail.ru

г. Харьков, ул. Петровского, 25, ХНАДУ, КАФЕДРА ТМ и М Tel.(8-057)707-37-92