

ТЕРМИЧЕСКАЯ СВАРКА

Лекция 11 Поток 1A

Лектор доц. Дощечкина И.В.

Использованы материалы электронного ресурса www.google.com.ua/search)

ПЛАН ЛЕКЦИИ

- *1.Виды сварки.
- *2.Сварочная дуга. Её строение и свойства.
 - 3.Источники сварочного тока. Их внешняя характеристика.
- *4.Режим работы сварочной цепи.
 - 5. Ручная дуговая сварка.
 - 6.Электроды и сварочная проволок.
 - 7.Выбор режима ручной дуговой сварки.
 - 8. Виды сварных соединений.

Сварка – технологический процесс получения неразъемных соединений твердых материалов за счет использования межатомных и межмолекулярных сил сцепления.

По форме используемой энергии сварку делят на ТРИ КЛАССА:

Термическая сварка

- 1.дуговая
- 2.электрошлаковая
- 3.газовая
- 4.плазменная
- 5.индукционная
- 6.лазерная

Эти виды сварки используют тепловую энергию

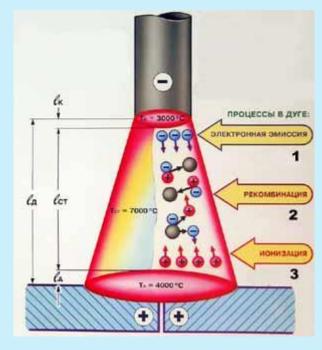
Термомеханическая сварка

- 1.контактная
- 2. диффузионная
- 3.газопрессовая
- 4. дугопрессовая

Сварка производится с использованием тепловой энергии и давления

Механическая сварка

- 1.холодная
- 2.трением
- 3.взрывом
- 4. давлением
- 5.ультразвуком

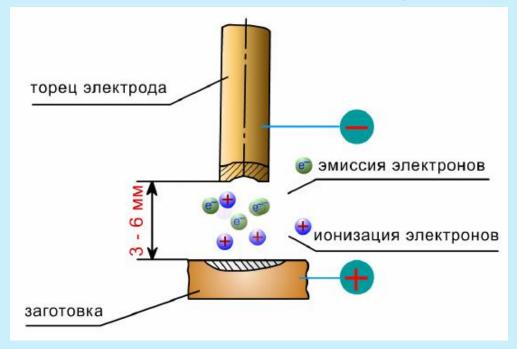

Эти виды сварки осуществляются за счет разных видов механической энергии

Термическая сварка Дуговая сварка, её виды

При электрической дуговой сварке нагрев и плавление металла осуществляются теплом электрической дуги.

Сварочная дуга -

мощный электрический разряд в газах, сопровождающийся выделением теплоты и света. Это сложный ионный и электронный процессы перемещения электрических зарядов сквозь ионизированное воздушное пространство


Зажигания дуги происходит в три этапа:

- 1- ЭМИССИЯпоявление электронов проводимости
- 2- РЕКОМБИНАЦИЯ объединение отрицательных электронов и положительных ионов в неитральные атомы
- 3- ИОНИЗАЦИЯ образование положительно заряженных частиц

Процесс зажигания дуги в большинстве случаев включает короткое замыкание электрода на заготовку, отвод электрода на расстояние 3-6 мм и возникновение устойчивого дугового разряда.

Процесс зажигания дуги

После короткого замыкания и разогрева электрода (катода) с его торца под действием электрического тока начинается эмиссия электронов и движение их к изделию (аноду) после отвода электрода от места контакта.

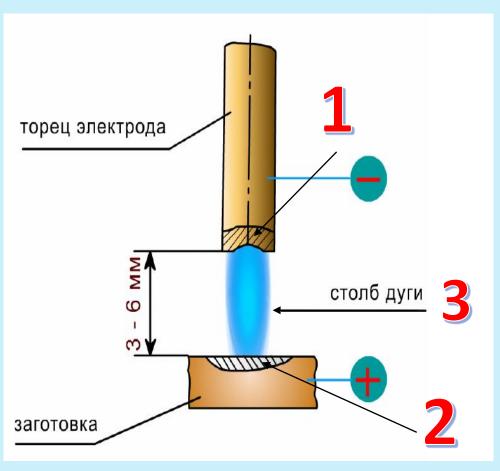
Смесь электронов, ионов и нейтральных атомов, называется плазмой. Она обладает высокой елктропроводностью.

Электроны на пути к аноду сталкиваются с молекулами и атомами воздуха, газов и паров металла, ионизирую их. Газовый дуговой промежуток становится токопроводящим. Зажигается сварочная дуга.

Отрицательные ионы и электроны движутся к аноду, положительные ионы – к катоду. На поверхности анода и катода происходит процесс нейтрализации заряженных частиц и превращение электрической энергии в тепловую.

Питание сварочной дуги осуществяляется от источников постоянного или переменного тока при прямой или обратной полярности

Сварка на постоянном токе: устойчивое горение дуги, но низкий КПД сварочного агрегата (0,3-0,6) и большой расход энергии


Сварка на переменном токе: высокий КПД трансформатора (0,8-0,85), малый расход электроэнергии, оборудование меньших габаритов. Но сварочная дуга неустойчивая

При обратной полярности температура на поверхности металла ниже. При переменном токе полярность постоянно изменяется.

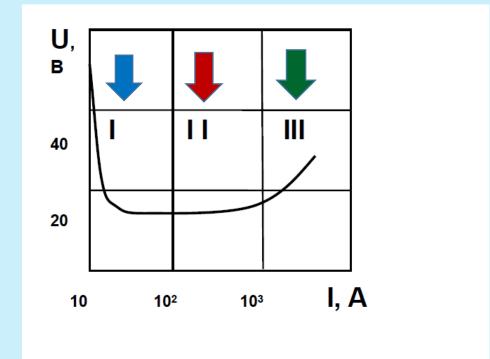
Дуга расплавляет основной металл и металлический электрод.

Строение дуги, её тепловые свойства

Сварочная дуга состоит из трех частей — катодного (1), анодного (2) пятен и столба. Температура столба дуги 6000-7000 °C. Температура катодного и анодного пятен 2400 и 2600 °C.

При постоянном токе на аноде выделяется ~ 43% теплоты, на катоде ~ 36% и ~ 20% в столбе дуги.

Около 50% теплоты расходуется на нагрев изделия, 30% - на нагрев электрода и ~ 20% уходит в окружающее пространство.


Электрические свойства дуги: напряжение (U) сварочный ток (A) и длина дуги (I). При установившейся дуге зависимость между напряжением и током определяется её статической вольт-амперной характеристикой.

I - падающяя,

II – жесткая,

. III –возрастающяя.

Дуга с падающей характеристикой неустойчива и ограничено применяется.

Дугой с возрастающей характеристикой производится автоматическая сварка под флюсом на форсированных режимах.

Наиболее часто используюьт дугу с жесткой характеристикой (II), когда напряжение на дуге не зависит от силы сварочного тока.

U = abl

а и b - коэфициенты, зависящие от материала электрода

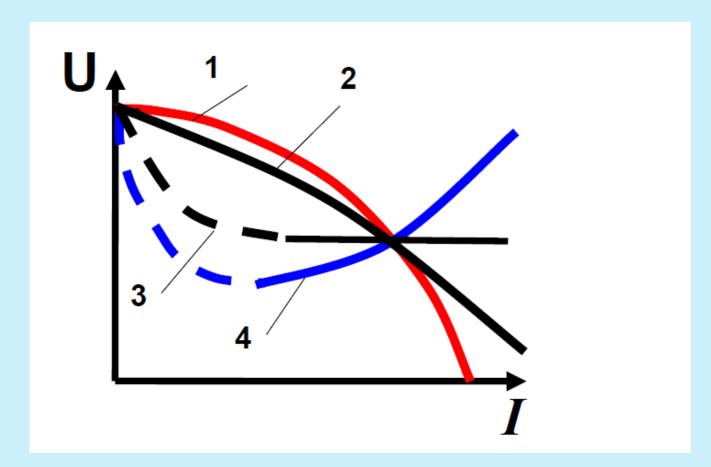
Источники сварочного тока

Для дуговой сварки используют постоянный и переменный ток.

Источники постоянного тока - сварочные генераторы и выпрямители, переменного — сварочные трансформаторы. Широкое приминение нашли инверторы — преобразователи постоянного тока в высокочастотный переменный, что обеспечивает стабильно стойкую дугу при любых режимах сварки.

Источники тока должны обеспечивать:

- лёгкое зажигание и устойчивое горение дуги,
- возможность регулировки силы тока,
- ограничивать ток короткого замыкания.

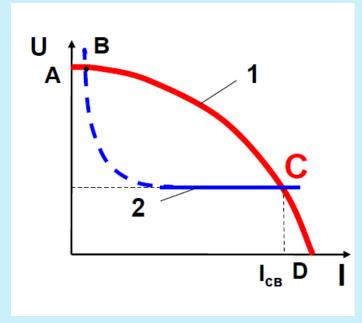

Напряжение для зажигания дуги — это напряжение холостого хода, оно должно быть не ниже 30-35В для источников постоянного тока и не менее 50-55В для источников переменного тока (не превышая 80В)

Для устойчивого горения дуги в большинстве случаев достаточно напряжения 18-30В.

Источник питания для сварочной дуги имеет специальную внешнюю характеристику, которая представляет зависимость между напряжением на зажимах источника тока и силой тока в сварочной цепи- это вольт-амперная характеристика источника тока.

Существую такие виды внешней характеристики:

- 1 крутопадающая;
- 2 пологопадающая;
- 3 жесткая;
- 4 возрастающая.


Для дуги с жесткой характеристикой (кривая 2) используют источник тока с крутопадающей (кривая 1) или пологопадающей внешней характеристикой, обеспечивающей стойкий режим процесса сварки.

Режим работы сварочной цепи определяют по характерным точкам.

Точка A – режим холостого хода источника тока, когда дуга не зажжена и электроцепь разомкнута.

Точка В – режим нестойкого горения дуги.

Точка C – режим устойчивого горения дуги.

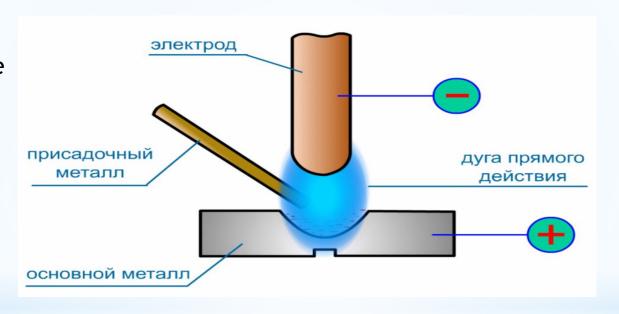
Точка D – режим работы короткого замыкания в момент зажигания дуги, когда напряжение примерно равно 0.

Дуга зажигается при U = 18-20B.

Время до восстановления напряжения для стойкого горения дуги менее 0,5c.

Соотношение между током короткого замыкания Ік и рабочим током Ісв называется коэффициентом добротности

$$1,25 \le lk/lcb \le 2$$


Ручная дуговая сварка

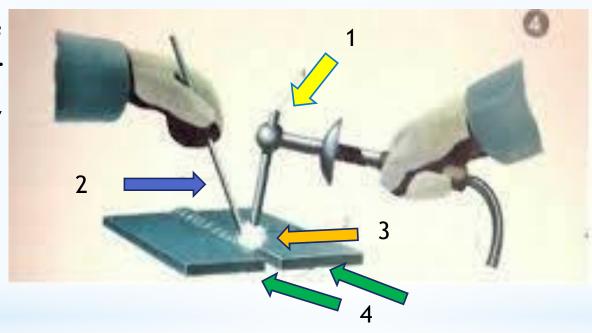
Сварка неплавящимся электродом

Метод Бенардоса (1882)

Используют графитовые, угольные и вольфрамовые электроды.

Расплавляется основной металл и присадочный. Электрод не плавится.

Дуга прямого действия только на основной металл. На присадочный металл действие её косвенное.

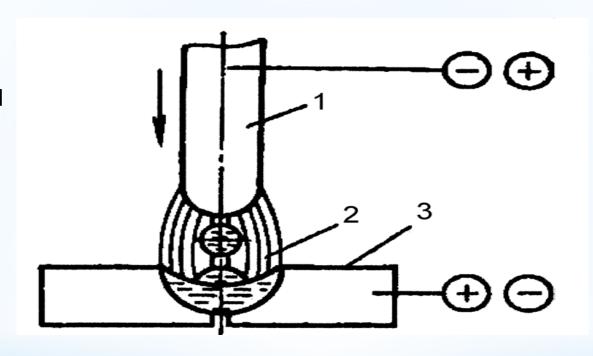

Дуга постоянного тока прямой полярности (минус на электроде, плюс- на изделии) стабильное.

При обратной полярности дуга нестойкая и имеет место науглероживание из-за перегрева электрода.

Способ Бенардоса

Электрод находится в правой руке, а присадочный металл- в левой.

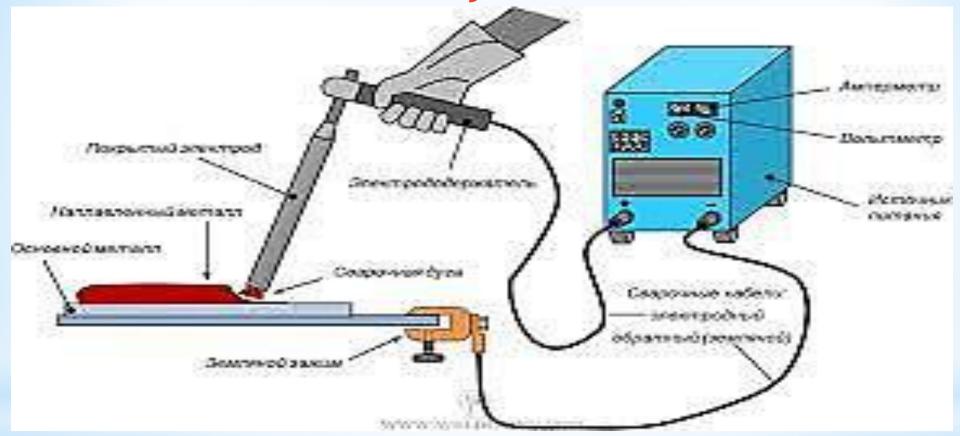
Присадочный материал в сварную цепь не включён. Его назначение наполнить жидкую ванну для формирования сварного шва.


- 1. Неплавящийся электрод
- 2. Присадочный материал
- 3. Электрическая дуга
- 4. Свариваемый металл

Сварка этим способом используется при исправлении дефектов в чугунных и бронзовых отливках, при наплавке порошковыми твёрдыми сплавами изношенных поверхностей.

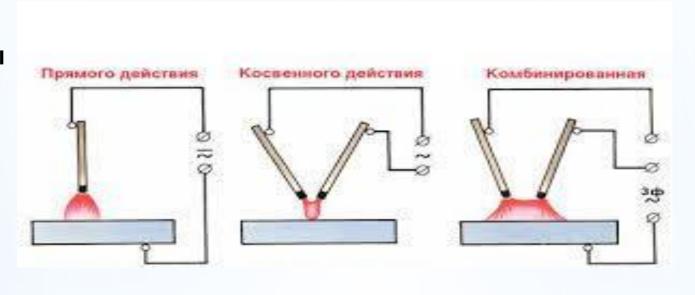
Сварка плавящимся электродом

Способ Славянова (1888г.)


Дуга прямого действия постоянного (прямая полярность) или переменного (обратная полярность) тока.

Торец электрода нагревается до высоких температур и быстрее расплавляет основной металл

Этот способ является наиболее распространённым.


Процесс сварки плавящимся электродом по методу Славянова.

Электрод включён в сварочную цепь и является как проводником электрического тока, так и наполнителем сварочной ванны.

Виды дуговой сварки Классификация сварочной дуги.

Дуга прямого действия- способы Славянова и Бенардоса. Косвенная дуга горит между двумя неплавящимися электродами

Дуга комбинированного действия- сварка трёхфазной дугой. Горят три дуги- две между электродами и изделием, одна между электродами.

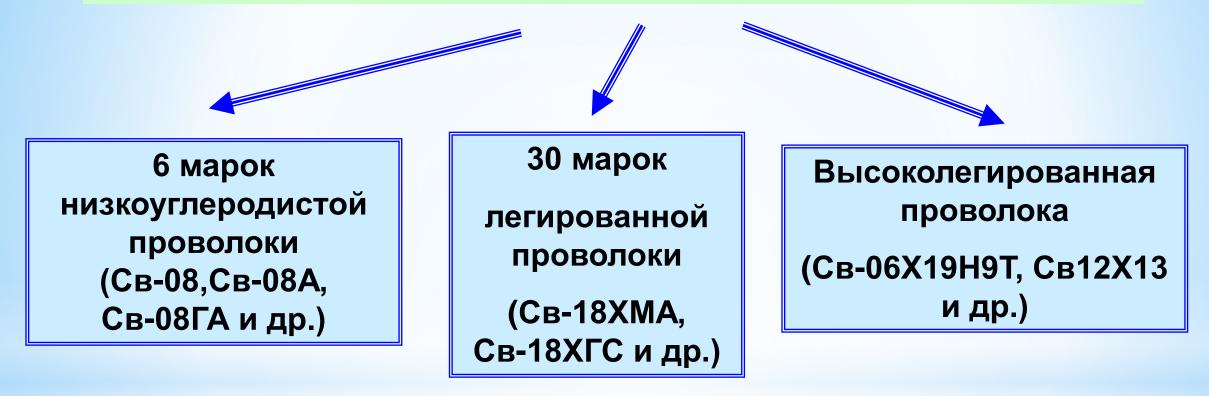
Сварка трёхфазной дугой в три раза продуктивнее сварки по способу Славянова и используется при автоматической сварке метала большой толщины.

Косвенная дуга применяется для сварки тонких изделий и при износостойкой наплавке.

Электроды для ручной дуговой сварки.

Электроды- проволочные стержни с нанесёнными на них покрытиями, которые сварщик перемещает вдоль свариваемых изделий.

Стержни электродов изготавливают из холоднотянутой проволоки повышенного качества (стальной, медной и др.) Диаметр их 0.3-12мм, длина 150-450_{MM}



Для сварки сталей применяют стальную сварочную проволоку 75 марок в соответсвии с ГОСТ 2246-70/80

Сварочную проволоку используют для стержней электродов с покрытием при автоматической сварке под флюсом, в среде защитных газов и как присадочный материал при сварке неплавящимся электродом.

Маркировка сварочной проволоки

По химическому составу сварочную стальную проволоку делят три группы

В марке проволоки "Св" обозначает "сварочная", буквы и цифры – ее химический состав. Например, проволока марки Св-08ГС содержит: 0,08 % С; 1 % Мп; 1 % Si. Марка Св12-13 – 0.12% С и 13% Сг

Защита сварочной ванны

Сварку стержнями из проволоки без покрытия не производят из-за нестойкого горения дуги и насыщения металла кислородом, азотом, водородом из воздуха.

Покрытия электродов

Назначение покрытий - защита зоны сварки от воздействия воздуха, легирование металла сварного шва стабилизация горения дуги и удаление вредных примесей из сварочной ванны.

Покрытия содержат различные составляющие (в зависимости от назначения) на основе жидкого стекла.

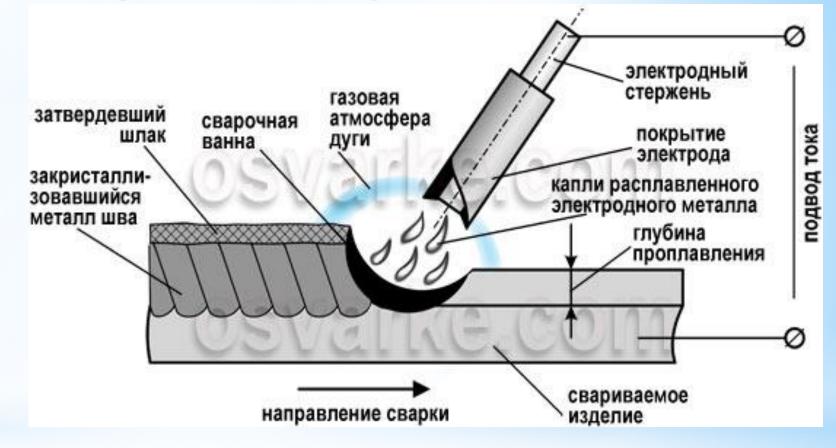
Классификация электродов

Электроды для ручной дуговой сварки согласно ГОСТ делятся на четыре группы

Для наплавки поверхностных слоёв с особыми свойствами. Электроды типов:

Э-10Г2,

9-10Χ2ΓΜ.


Цифра после буквы "Э" обозначает временное сопротивление металла шва в 10-1 МПа.

Например, электрод типа **Э-42**: σ_B =**420** МПа.

Каждый тип электрода несколько марок. Тип Э-42- марки УОНН-13, СМ11 и др.

Сварка электродом с покрытием

В процессе сварки плавится стержень и стекает каплями в металлическую ванну. Плавится также покрытие, образуя газовую защитную атмосферу вокруг дуги и жидкую шлаковую ванну на поверхности металла.

По мере движения дуги сварочная ванна затвердевает и образуется сварочный шов. Жидкий шлак остывает и на поверхности шва находится затвердевшая твёрдая корка, предохраняющая сварной шов от окисления.

Выбор режима ручной дуговой сварки

1. Тип электрода.

2. Диаметр электрода.

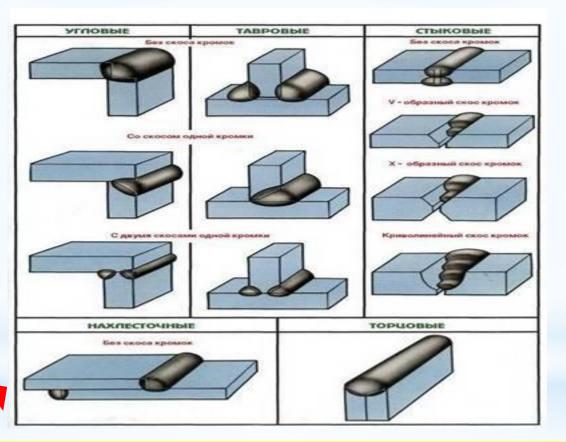
Толщина свариваемого металла δ, мм	До 2	3–5	5–10	11-24 и больше
Диаметр электрода, $d_{_9}$, мм	1–2	3–4	4–5	5–6

3.Сила сварочного тока

$$I = K \cdot d_{ae}$$

K - коэффициент длянизкоуглеродистых сталей<math>K = 40-60 А/мм,

для высоколегированных сталей K = 35-40 А/мм).

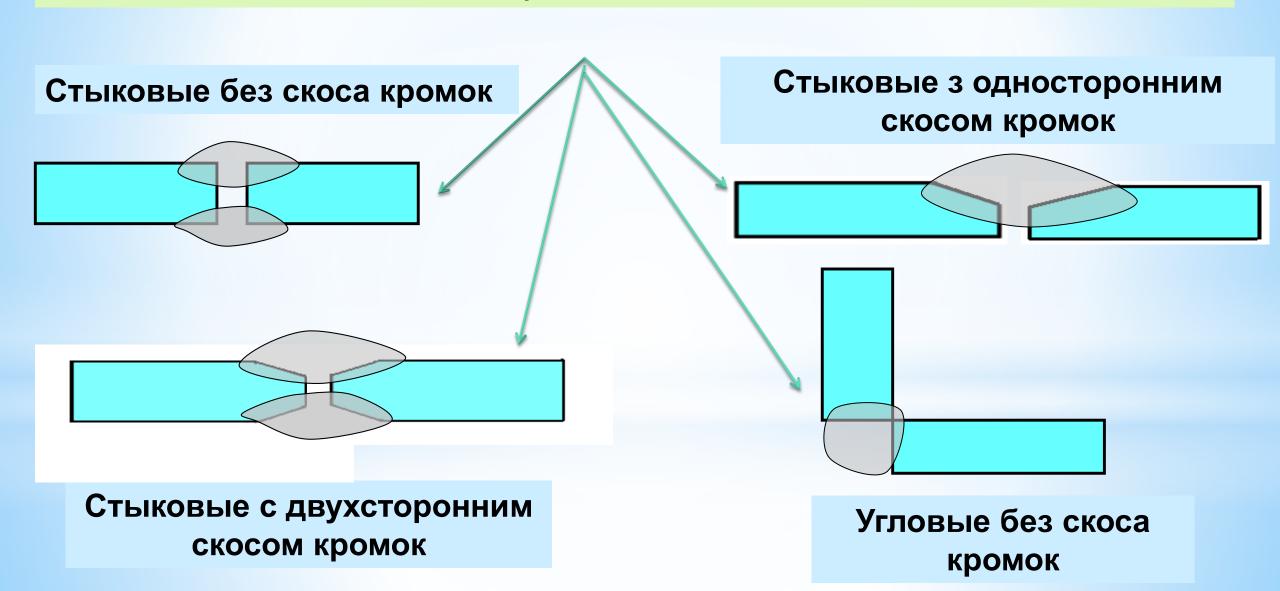

4.Длина дуги

$$L_{0} = (0,5 d_{9} + 1)$$

Виды сварных соединений

Виды сварных соединений: угловые, тавровые и стыковые.

Между кромками оставляют зазор 0-4мм в зависимости от толщины металла . Тонкий лист сваривают с отбортовкой.


По положению в пространстве различают швы нижние, потолочные, горизонтальные и вертикальные . Потолочные швы наиболее сложные.

Соединения нахлёсточные используют для листов толщиной 2- 60мм и сваривают с обеих сторон.

Виды сварных соединений

В зависимости от толщины листа соединения выполняются:

ТЕМЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

- 1.В чём физическая суть сваривания?
- 2. Какие компоненты входят в состав электродного покрытия?
- 3.Как регулируется сварочный ток?
- 4. Как достигается спад внешней характеристики в источниках постоянного и переменного тока при дуговом сваривании?

Литература

- 1.Гладкий И.П.Технология конструкционных материалов и материаловедение: учебное пособие / И.П. Гладкий, В.И. Мощенок, В.П.Тарабанова, Н.А.Лалазарова, Д.Б Глушкова Харьков: ХНАДУ. 2011.- 460 с. (стр. 148-159).
- 2. Сологуб М А. Технологія конструкційних матеріалів: Підручник / М,А Сологуб, І.О Рожнецький, О.І.Некоз. К.: Вища школа. 2002. -374 с. (стр. 178 192

Кафедра технологии металлов и материаловедения

Доц. Дощечкина Ирина Васильевна

E-mail: divkhadi@ukr.net

Харьков, ул. Петровского, 25, ХНАДУ