

Министерство образования и науки Украины Харьковский национальный автомобильно-дорожный университет

КРАТКИЙ КУРС ХИМИИ

для студентов - иностранцев

Министерство образования и науки Украины Харьковский национальный автомобильно-дорожный университет

КРАТКИЙ КУРС ХИМИИ

для студентов - иностранцев

Утверждено методическим советом университета протокол \mathfrak{N}_{2} от

Составители

Кафедра химии Э.Б. Хоботова

Кафедра филологии И.Е. Семененко

Цель краткого курса химии – оказание помощи студентам-иностранца в самостоятельной работе с учебной литературой, в получении научно-теоретических и практических знаний по курсу химии.

Инженер любой специальности должен иметь знания в области химии. Изучение курса химии позволяет получить современное научное представление о материи, веществе, о механизмах превращений химических соединений. Необходимо хорошо знать основные законы химии и уметь делать химические расчеты. Знание химии необходимо для изучения других общенаучных и специальных дисциплин.

Изучать курс химии рекомендуется по темам. В данном пособии приведены основные темы по главным разделам химии. Внимательно прочитайте все определения (выделены жирным шрифтом) и выучите формулы. Темы «Химические источники тока», «Коррозия металлов», «Электролиз солей» являются основными при изучении химии студентами автомобильного, механического факультетов и факультета транспортных систем. Темы «Дисперсные системы» и «Основы химии неорганических вяжущих веществ» предназначены для студентов дорожно-строительного факультета специальностей «Экология и охрана окружающей среды», «Автомобильные дороги и аэродромы», «Мосты и транспортные туннели», и студентами других специальностей. могут быть использованы Дисперсные системы чрезвычайно разнообразны и широко распространены в природе. Грунты, с которыми имеют дело в дорожном строительстве, представляют собой дисперсные системы. Специалист-дорожник должен хорошо знать свойства грунтов и уметь активно воздействовать на грунты, улучшая условия их работы в сооружении. Производство строительных материалов (цемента, гипса, битума и др.), производство лаков и красок в значительной степени основано на использовании свойств различных суспензий и эмульсий. Студенты автомобильно-дорожных институтов не знакомы с основным курсом физической химии, поэтому материал изложен в простой форме.

В теме «Основы химии неорганических вяжущих веществ» описаны общие свойства вяжущих веществ, способы их получения и процессы твердения. Основное внимание уделяется химическим и физико-химическим процессам получения вяжущих веществ и их твердения. Обращено внимание на основные виды коррозии бетона и методы борьбы с нею.

Изучение курса химии должно обязательно сопровождаться выполнением упражнений и решением задач. Для каждой темы в конце приведены примеры решения задач или выполнения заданий. Рекомендуется часть задач и заданий выполнить самостоятельно. Решение задач — один из методов прочного усвоения, проверки и закрепления теоретического материала.

Тема №1 « ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ»

1. Прочитайте специальные термины, о которых вам предстоит узнать из текста:

окислительно-восстановительные реакции, заряд ионов, окисление, восстановление, окислитель, восстановитель, степень окисления.

2. Обратите внимание на способ образования следующих существительных:

окисление

суффикс –ение (ср.р.)

восстановление

окислитель

суффикс –тель (м.р.)

восстановитель

- 3. Обратите внимание на синонимы *высший максимальный* и антонимы *высший низший*.
 - 4. Обратите внимание на группу родственных слов: окисление, окислительный, окислитель; восстановление, восстановительный, восстановитель
 - 5. Прочитайте текст и ответьте на вопросы.

Окислительно-восстановительные реакции — это реакции, в которых меняется степень окисления элемента.

Стиенны окисления — это число электронов, смещенных от атома элемента к другим атомам (положительная) или от других атомов к атому данного элемента (отрицательная).

Для определения степени окисления надо помнить следующие *правила*:

- 1) Степень окисления простых веществ равна нулю. Например, O_2^0 , Cl_2^0 , S^0 , Cu^0 ;
- 2) Сумма степеней окисления всех атомов молекулы равна нулю. Например, H^+Cl^- , сумма степеней окисления +1-1=0; $K^+Mn^{+7}O_4^{-2}$, сумма степеней окисления равна +1+7+4(-2)=0;
- 3) Степень окисления водорода в большинстве соединений равна +1 (H^+). Исключением являются гидриды металлов, в которых H^- . Например, Li^+H^- , $Ca^{+2}H_2^-$.
- 4) Степень окисления кислорода в большинстве соединений равна 2 (${\rm O}^{\text{-2}}$). Исключением являются перекиси, в которых ${\rm O}^{\text{-}}$. Например, ${\rm H}_2^+{\rm O}_2^-$. В молекуле ${\rm OF}_2$ степень окисления кислорода +2 ${\rm O}^{\text{+2}}{\rm F}_2^-$.
 - 5) Постоянные степени окисления:
- степень окисления +1 элементы I группы таблицы Менделеева (главная подгруппа). Например, Na^+ , Li^+ ;

- степень окисления +2 элементы II группы (главная подгруппа Например, Ca^{+2} , Mg^{+2} , Cd^{+2} , Zn^{+2} ;
 - степень окисления +3 алюминий Al^{+3} (Ш группа).
- 6) Высшая (максимальная) степень окисления элемента равна номеру его группы. Например, Mn $^{+7}$ (VII группа), S $^{+6}$ (VI группа).

Если знать степени окисления элементов, то можно найти *заряд ионов*. Сумма степеней окисления элементов в ионе не равна нулю. Например, $(S^{+6}O_4^{-2})^{2-}$, $(N^{+5}O_3^{-2})^{-}$, $(C^{+4}O_3^{-2})^{2-}$, $(P^{+5}O_4^{-2})^{3-}$ и $(O^{-2}H^+)^-$. Необходимо знать формулы основных кислот, названия и заряды кислотных остатков (анионов) (таблица 1).

Изменение степени окисления элемента

Окисление — это процесс отдачи электронов атомом или ионом. Происходит увеличение положительного заряда. Например,

$$\operatorname{Cr}^{0} - 3\overset{-}{\operatorname{e}} \to \operatorname{Cr}^{+3};$$

 $\operatorname{H}_{2} - 2\overset{-}{\operatorname{e}} \to 2\operatorname{H}^{+};$

Таблица 1 - **Формулы и названия неорганических кислот и их** анионов

Формула		Степень	Форму	Название
кислоты	Название кислоты	окисления	ла	аниона
		центрального	аниона	
		элемента		
HF	Фтористоводородная	F^-	F^-	Фторид-
	(плавиковая)			
HC1	Хлористоводородная	Cl ⁻	C1 ⁻	Хлорид-
	(соляная)			
HBr	Бромистоводородная	Br ⁻	Br^-	Бромид-
HI	Йодистоводородная	I^-	I^-	Йодид-
H_2S	Сероводородная	S^{2-}	S^{2-}	Сульфид-
HNO_3	Азотная	N ⁺⁵	NO_3^-	Нитрат-
HNO ₂	Азотистая	N ⁺³	NO_2^-	Нитрит-
H ₂ SO ₄	Серная	S ⁺⁶	SO ₄ ²⁻	Сульфат-
H_2SO_3	Сернистая	S ⁺⁴	SO ₃ ²⁻	Сульфит-
H_3PO_4	Ортофосфорная	P ⁺⁵	PO ₄ ³⁻	Фосфат-
H_3PO_3	Фосфористая	P ⁺³	PO_3^{3-}	Фосфит-
	Угольная	C ⁺⁴	CO_3^{2-}	Карбонат-
H_2CO_3				
H ₂ SiO ₃	Кремниевая	Si ⁺⁴	SiO ₃ ²⁻	Силикат-

$$S^{-2} - 8e \rightarrow S^{+6}$$
.

Элемент, который отдает электроны, называется восстановителем.

Восстановитель окисляется. В примерах восстановителем были ${\rm Cr}^0$, ${\rm H}_2$, ${\rm S}^{-2}$.

Восстановление — это процесс присоединения электронов атомом или ионом. Происходит увеличение отрицательного заряда. Например,

$$S^{0} + 2e^{-} \rightarrow S^{-2};$$

 $Cl_{2}^{0} + 2e^{-} \rightarrow 2Cl^{-};$
 $N^{+5} + 2e^{-} \rightarrow N^{+3};$
 $I^{+5} + 6e^{-} \rightarrow I^{-}.$

Элемент, который присоединяет электроны, называется *окислителем*. В примерах окислителем были S^0 , Cl_2^0 , N^{+5} , I^{+5} .

Элемент в высшей степени окисления может быть только окислителем. Например, S^{+6} , Cr^{+6} , Cl^{+7} , Mn^{+7} .

Элемент в низшей степени окисления может быть только восстановителем. Например, S^{-2} , Cl^- , Mn^0 .

Элемент в промежуточной степени окисления может быть или окислителем, или восстановителем в зависимости от условий реакции. Например, N^{+3} , Cr^{+3} , Cl^{+} , Cl^{+5} .

Составление уравнений окислительно-восстановительных реакций (OBP) методом электронного баланса.

Последовательность составления уравнений ОВР:

- Написать формулы исходных веществ и продуктов реакции;
- Найти степень окисления элементов;
- Составить электронные уравнения процессов окисления и восстановления;
 - Найти коэффициенты для окислителя и восстановителя;
 - Перенести коэффициенты в уравнение реакции;
- Найти коэффициенты для элементов, которые не изменили степени окисления;
- Проверить правильность подбора коэффициентов по количеству атомов кислорода или водорода в левой и правой частях уравнения.

Рассмотрим метод электронного баланса на примере схемы реакции

$$P + HNO_3 \rightarrow H_3PO_4 + NO_2 + H_2O.$$

Найдем степени окисления элементов.

$$P^{0} + H^{+}N^{+5}O_{3}^{-2} \longrightarrow H_{3}^{+}P^{+5}O_{4}^{-2} + N^{+4}O_{2}^{-2} + H_{2}^{+}O^{-2}.$$

Изменили степень окисления элементы фосфор и азот. Состави электронные уравнения процессов окисления и восстановления

$$P^0 - 5e^- \rightarrow P^{+5}$$
 - окисление

$$N^{+5} + \stackrel{-}{e} \rightarrow N^{+4}$$
 - восстановление

В реакции P^0 является восстановителем, N^{+5} - окислителем.

Найдем коэффициенты для реакций окисления и восстановления. Баланс электронов устанавливается при пяти электронах в первом и втором электронных уравнениях. Поэтому коэффициенты будут 1- для первого уравнения, 5 — для второго уравнения.

$$\begin{array}{c|c}
P^{0} - 5\stackrel{-}{e} \rightarrow P^{+5} & 1 \\
N^{+5} + \stackrel{-}{e} \rightarrow N^{+4} & 5
\end{array}$$

Перенесем коэффициенты в уравнение реакции

$$P^{0} + 5H^{+}N^{+5}O_{3}^{-2} \rightarrow H_{3}^{+}P^{+5}O_{4}^{-2} + 5N^{+4}O_{2}^{-2} + H_{2}^{+}O^{-2}.$$

Проверка по количеству атомов кислорода и водорода показала правильность составления уравнения реакции.

Вопросы: 1. Какие реакции называются окислительно-восстановительными?

- 2. Какие бывают степени окисления?
- 3. Какие правила нужно помнить для определения степени окисления?
- 4. Какой процесс называется окислением?
- 5. Как называется элемент, который отдает электроны?
- 6. Какой процесс называется восстановлением?
- 7. Как называется элемент, который присоединяет электроны?

Задание. Разделите текст на смысловые отрезки. Запишите основную информацию каждого смыслового отрезка в виде тезисов. По полученной записи перескажите текст.

Примеры выполнения заданий

1. Укажите процессы окисления и восстановления при превращениях

$$I_2 \rightarrow 2I^-;$$

Al \rightarrow Al⁺³;

$$2H^+ \rightarrow H_2$$
.

Ответ: Запишем полные электронные уравнения

$$I_2 + 2e \rightarrow 2I^-$$
.

Происходит присоединение электронов — процесс восстановления. ${\rm I}_2$ - окислитель.

$$Al - 3e \rightarrow Al^{+3}$$
.

Происходит отдача электронов – процесс окисления. Al восстановитель.

$$2H^+ + 2e^- \rightarrow H_2$$
.

Происходит присоединение электронов — процесс восстановления. H^+ окислитель.

2. Составьте формулы высших оксидов Mn, Cl, N,S.

Ответ: В высших оксидах элемент имеет максимальную степень окисления равную номеру его группы. Мп - элемент VII группы таблицы Менделеева, поэтому его высшая степень окисления +7. Формула высшего оксида $Mn_2^{+7}O_7^{-2}$. Аналогично для Cl - элемента VII группы. Формула оксида $Cl_2^{+7}O_7^{-2}$.

Азот N - элемент V группы, поэтому его высшая степень окисления +5. Формула высшего оксида $N_2^{+5}O_5^{-2}$.

Сера S элемент VI группы, её высшая степень окисления +6. Формула высшего оксида $S^{+6}O_3^{-2}$.

Во всех формулах сумма степеней окисления элементов равна нулю.

3. Определите максимальную отрицательную и положительную степени окисления азота в молекулах HNO₃ и NH₃.

Ответ: Максимальную степень окисления азот имеет в молекуле HNO_3 . Она равна +5 (азот- элемент V группы). $H^+N^{+5}O_3^{-2}$ - сумма степеней окисления элементов в молекуле равна нулю: +1+5+3 (-2)=0.

Максимальную отрицательную степень окисления азот имеет в молекуле NH_3 . Она равна -3. $N^{-3}H_3^+$ - сумма степеней окисления элементов в молекуле равна нулю: -3+3=0.

4. Определите в каких соединениях сера только окислитель, а в каких - только восстановитель: H_2SO_3 , H_2S , S, H_2SO_4 , SO_2 .

Ответ: Окислителем сера является в молекуле H_2SO_4 . Сера в высшетелени окисления +6 может только присоединять электроны.

Восстановителем сера является в молекуле H_2S . Сера в отрицательной степени окисления может только отдавать электроны.

Во всех других соединениях $H_2S^{+4}O_3$, S^0 , $S^{+4}O_2$. Сера имеет промежуточные степени окисления и может быть и окислителем, и восстановителем в зависимости от условий реакции.

5. Расположите соединения хлора в ряд увеличения их окислительной силы: Cl_2 , Cl_2O_7 , $HClO_3$, HCl_3 , $HClO_4$, $HClO_4$, $HClO_5$.

Ответ: Сила окислителя увеличивается с увеличением степени окисления центрального элемента в молекуле. Ряд увеличения окислительной способности соединений хлора следующий:

$$HCl^{-} < Cl_{2}^{0} < HCl^{+}O < HCl^{+3}O_{2} < HCl^{+5}O_{3} < Cl_{2}^{+7}O_{7} \approx HCl^{+7}O_{4}$$
.

6. Возможна ли окислительно-восстановительная реакция между соединениями: $KMnO_4u H_2S$; $HNO_3u H_2SO_4$?

Ответ: Окислительно-восстановительная реакция возможна, когда происходит обмен электронами между окислителем и восстановителем. Найдем степени окисления центральных элементов молекул: $KMn^{+7}O_4$ и H_2S^{-2} ; $HN^{+5}O_3$ и $H_2S^{+6}O_4$. В первом случае окислительно-восстановительная реакция возможна, потому что Mn^{+7} может быть окислителем, а S^{-2} -восстановителем. Возможен обмен электронами между S^{-2} и Mn^{+7} . Во втором случае OBP не возможна, потому что N^{+5} и S^{+6} могут быть только окислителями. В данном случае не происходит обмен электронами между элементами.

7. Составьте окислительно-восстановительное уравнение по схеме реакции с помощью метода электронного баланса

$$KMnO_4 + Na_2SO_3 + H_2SO_4 \rightarrow MnSO_4 + Na_2SO_4 + K_2SO_4 + H_2O.$$

Ответ: Найдем степени окисления элементов в молекулах

$$K^{+}Mn^{+7}O_{4} + Na_{2}^{+}S^{+4}O_{3} + H_{2}S^{+6}O_{4} \rightarrow Mn^{+2}S^{+6}O_{4} + Na_{2}^{+}S^{+6}O_{4} + K_{2}^{+}S^{+6}O_{4} + H_{2}O.$$

Изменили степень окисления Mn и S. Составим электронные уравнения процессов окисления и восстановления

$${\rm Mn}^{+7} + {\rm 5\,e}^-
ightarrow {\rm Mn}^{+2}$$
 - восстановление ${\rm S}^{+4} - {\rm 2\,e}^-
ightarrow {\rm S}^{+6}$ - окисление

В реакции S^{+4} является восстановителем, Mn^{+7} - окислителем.

Найдем коэффициенты для реакций окисления и восстановления Баланс электронов устанавливается при десяти электронах в первом и втором электронных уравнениях. Поэтому коэффициенты будут 2 - для первого уравнения, 5 – для второго уравнения.

$$Mn^{+7} + 5e^{-} \rightarrow Mn^{+2}$$
 2
 $S^{+4} - 2e^{-} \rightarrow S^{+6}$ 5

Перенесем коэффициенты в уравнение реакции.

$$2KMnO_4 + 5Na_2SO_3 + H_2SO_4 \rightarrow 2MnSO_4 + 5Na_2SO_4 + K_2SO_4 + H_2O.$$

Напишем нужные коэффициенты перед молекулами веществ, элементы которых не изменили степень окисления.

$$2KMnO_4 + 5Na_2SO_3 + 3H_2SO_4 \rightarrow 2MnSO_4 + 5Na_2SO_4 + K_2SO_4 + 3H_2O.$$

Проверка по количеству атомов кислорода и водорода показала правильность составления уравнения реакции.

8. Составьте окислительно-восстановительное уравнение по схеме реакции с помощью метода электронного баланса

$$H_2S + Cl_2 + H_2O \rightarrow H_2SO_4 + HCl$$
.

Ответ: Найдем степени окисления элементов в молекулах

$$H_2S^{-2} + Cl_2^0 + H_2O \rightarrow H_2S^{+6}O_4 + HCl^-$$
.

Изменили степень окисления Cl и S. Составим электронные уравнения процессов окисления и восстановления.

$$Cl_2^0 + 2e \rightarrow 2Cl^-$$
 - восстановление

$$S^{-2} - 8e \rightarrow S^{+6}$$
 - окисление

В реакции S^{-2} является восстановителем, Cl_2^0 - окислителем.

Найдем коэффициенты для реакций окисления и восстановления. Баланс электронов устанавливается при восьми электронах в первом и втором электронных уравнениях. Поэтому коэффициенты будут 4 - для первого уравнения, 1 — для второго уравнения.

$$Cl_{2}^{0} + 2e \rightarrow 2Cl$$

$$S^{-2} - 8e \rightarrow S^{+6}$$

$$1$$

Перенесем коэффициенты в уравнение реакции.

$$H_2S + 4Cl_2 + H_2O \rightarrow H_2SO_4 + 8HCl$$

Напишем нужные коэффициенты перед молекулами веществ, элементы которых не изменили степень окисления.

$$H_2S + 4Cl_2 + 4H_2O \rightarrow H_2SO_4 + 8HCl_{\bullet}$$

Проверка по количеству атомов кислорода и водорода показала правильность составления уравнения реакции.

Тема № 2 "ХИМИЧЕСКАЯ КИНЕТИКА. ХИМИЧЕСКОЕ РАВНОВЕСИЕ"

- 1. Прочитайте специальные термины, с которыми вам предстоит встретиться в тексте: химическая кинетика, гомогенные реакции, гетерогенные реакции, константа равновесия, экзотермические реакции, эндотермические реакции.
- 2.Запомните антонимы, которые встретятся вам в тексте: конечный начальный, выделение поглощение, повышение понижение, прямая реакция обратная реакция.
 - 3. Проанализируйте состав следующего слова: равновесие.
 - 4. Прочитайте текст и ответьте на вопросы.

Химическая кинетика – это раздел химии, изучающий скорость химических реакций и факторы, которые на нее влияют.

Различают реакции гомогенные и гетерогенные.

Гомогенные реакции протекают в одной фазе.

Гетерогенные реакции протекают в системе, которая состоит из нескольких фаз. Реакция протекает на поверхности раздела фаз.

Скорость реакции — это количество вещества, вступающее в реакцию за единицу времени в единице объема (для гомогенных реакций) или на единице площади раздела фаз (для гетерогенных реакций). Средняя скорость гомогенной реакции равна

$$v = \frac{\Delta v}{V \cdot \Delta t} = \frac{\Delta C}{\Delta t}$$
, моль/л'с,

где Δν - количество вещества;

V - объем;

 Δt - интервал времени;

 ΔC - изменение молярной концентрации.

Закон действия масс (ЗДМ): при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций

реагирующих веществ в степенях их стехиометрических коэффициент ЗДМ определяет зависимость скорости реакции от концентрации реагирующих веществ. Для реакции

$$nA + mB \rightarrow C$$

скорость реакции равна

$$v = k \cdot [A]^n \cdot [B]^m$$

где k — константа скорости реакции, равная скорости реакции при концентрациях реагирующих веществ равных единице.

Для гомогенной реакции $2NO_{(r)} + O_{2\ (r)} \Leftrightarrow 2NO_{2\ (r)}$ скорость реакции равна

$$v=k\cdot[NO]^2\cdot[O_2].$$

Для гетерогенных реакций в уравнение ЗДМ входят только концентрации газообразных или жидких веществ. Например, для горения угля

$$C_{(r)} + O_{2(r)} \Leftrightarrow CO_{2(r)},$$

$$v=k\cdot[O_2].$$

Зависимость скорости реакции от температуры определяют правило Вант-Гоффа и уравнение Аррениуса.

Правило Вант-Гоффа: повышение температуры на $10~^{0}$ С увеличивает скорость реакции в 2-4 раза. Или

$$\frac{v_2}{v_1} = \frac{k_2}{k_1} = \gamma^{\frac{\Delta t}{10}} \ ,$$

где v_2 , v_1 - скорости реакции при конечной t_2 и начальной температуре t_1 ; k_2 , k_1 — константы скорости реакции;

γ - температурный коэффициент скорости реакции, равный 2-4.

Уравнение Аррениуса показывает, что скорость реакции изменяется сильнее для тех реакций, энергия активации которых больше

$$k = A \cdot e^{\frac{-Ea}{RT}}$$
 или

$$\ln k = -\frac{E_a}{RT} + C,$$

где A, C - эмпирические константы;

 E_a - энергия активации;

R - универсальная газовая постоянная;

T - температура в K.

Химическое равновесие

Все химические реакции делятся на две группы: обратимые и необратимые. Обратимые реакции идут в прямом и обратном направлении.

$$mA + nB \Leftrightarrow pC + qD$$
.

Xимическое равновесие — это состояние системы, при котором скорости прямой и обратной реакции равны. Химическое равновесие характеризуется константой химического равновесия K, которая выражается через концентрации веществ.

Например, для химического равновесия

$$mA + nB \Leftrightarrow pC + qD$$

$$K = \frac{[C]^{\rho} \cdot [D]^{q}}{[A]^{m} \cdot [B]^{n}}.$$

Константа равновесия показывает отношение между концентрациями продуктов реакции и исходных веществ в степенях их стехиометрических коэффициентов.

Для гомогенной реакции

$$N_{2(\Gamma)} + O_{2(\Gamma)} \Leftrightarrow 2NO_{(\Gamma)}$$

$$K = \frac{[NO]^2}{[N_2] \cdot [O_2]}.$$

Для гетерогенной реакции в выражение *К* входят концентрации веществ в газообразном и жидком состоянии:

$$C_{(r)} + CO_{2(r)} \Leftrightarrow 2CO_{(r)}$$

$$K = \frac{[CO]^{2}}{[CO_{2}]}.$$

Принцип подвижного равновесия (принцип Ле Шамелье): если изменить одно из условий, при которых система находится в состоянии химического равновесия (C, T, p), то в системе протекают процессы, которые ослабляют это изменение.

Изменение концентрации веществ

Для системы $A+B \Leftrightarrow C+D$ увеличение концентрации веществ A и B приведет к увеличению v_{np} и сдвигу равновесия вправо. Увеличение концентраций веществ C и D приведет к сдвигу равновесия влево.

Изменение температуры

Реакции делятся экзотермические эндотермические. Экзотермические реакции ИДУТ с выделением теплоты $+Q \quad (-\Delta H).$ Эндотермические реакции протекают с поглощением теплоты -Q (+ ΔH). Q– тепловой эффект реакции, ΔH – изменение энтальпии системы. При температуры повышении равновесие смещается направлении эндотермической реакции, направлении при понижении экзотермической реакции. Например, для равновесия

$$N_{2(r)} + 3H_{2(r)} \Leftrightarrow 2NH_{3(r)} + 92,4 кДж$$

прямая реакция экзотермическая, а обратная — эндотермическая. Повышение температуры приведет к сдвигу равновесия влево и уменьшению количества аммиака.

Изменение давления

При увеличении давления в системе равновесие сместится в сторону уменьшения числа молекул газов и наоборот. Если количество молей исходных веществ и продуктов реакции одинаково, то изменение давления не влияет на сдвиг равновесия. Например, для равновесного состояния

$$2NO_{(r)} + O_{2(r)} \Leftrightarrow 2NO_{2(r)}$$

число моль газов:

3V 2V

увеличение давления приведет к сдвигу равновесия вправо и увеличению количества NO_2 и наоборот.

Вопросы: 1. Что изучает химическая кинетика?

- 2. Какие реакции вы знаете?
- 3. Чем отличаются гомогенные реакции от гетерогенных?
- 4. Сформулируйте закон действия масс.
- 5. Назовите правило Вант-Гоффа.
- 6. Что показывает уравнение Аррениуса?
- 7. Что называется химическим равновесием?
- 8. Что показывает константа равновесия?
- 9. Сформулируйте принцип Ле Шателье.
- 10. Какие реакции идут с поглощением теплоты, а какие с выделением?
- 11. Что произойдет в системе при изменении давления?

Задание. Кратко запишите ответы на вопросы. Опираясь на составленный вами конспект текста, расскажите о химической кинетике и химическом равновесии.

Примеры решения задач

1. Напишите выражения ЗДМ для реакции

$$2NO_{(\Gamma)} + 2H_{2(\Gamma)} \rightarrow N_{2(\Gamma)} + 2H_2O_{(\Gamma)}$$
.

Pешение: Реакция необратимая гомогенная, поэтому в выражение ЗДМ входят концентрации исходных веществ NO и H_2 в степенях их стехиометрических коэффициентов

$$v = k [NO]^2 \cdot [H_2]^2$$
.

2. Напишите выражение константы равновесия для химической системы

$$N_{2(\Gamma)} + O_{2(\Gamma)} \Leftrightarrow 2NO_{(\Gamma)}$$
.

Решение: Выражение для константы равновесия с использованием концентраций веществ

$$K = \frac{[NO]^2}{[N_2] \cdot [O_2]},$$

Химическая система гомогенная, поэтому в выражение K входят концентрации всех исходных веществ и продуктов реакции.

3. Напишите выражение ЗДМ для прямой и обратной реакции и выразите K для химической системы.

$$PCl_{5(r)} \Leftrightarrow Cl_{2(r)} + PCl_{3(x)}.$$

Pешение: Химическая система гетерогенная, поэтому в выражение ЗДМ и K не входит концентрация PCl_5 — твердого исходного вещества. Отсюда

$$v_{np} = k_{np},$$

$$v_{o\delta p.} = k_{o\delta p.} [\text{Cl}_2] \cdot [\text{PCl}_3],$$
 $K = [\text{Cl}_2] \cdot [\text{PCl}_3].$

4. Температурный коэффициент скорости реакции равен 4,0. Во сколько раз увеличится скорость реакции, если температура повышается с $35~^{0}$ С до $65~^{0}$ С?

Дано: γ =4,0 t_1 =35 0 C t_2 =65 0 C	химі
$\frac{v_2}{v_1}$ -?	

Решение:

При повышении температуры скорость химической реакции увеличивается согласно правилу Вант-Гоффа

$$\frac{v_2}{v_1} = \gamma^{\frac{t_2 - t_1}{10}} = 4^{\frac{65 - 35}{10}} = 4^3 = 64.$$

Ответ: скорость химической реакции увеличилась в 64 раза.

5. Напишите выражение $v_{np.}$, $v_{oбp.}$ и K для химической системы

 $2\text{CO}_{(\Gamma)} + \text{O}_{2(\Gamma)} \Leftrightarrow 2\text{CO}_{2(\Gamma)} + Q$. В какую сторону сместится равновесие при повышении температуры? Как сместится равновесие, если при постоянной температуре увеличить давление? Как повлияет на смещение равновесия увеличение концентрации O_2 и уменьшение концентрации CO?

Решение: Химическая система является гомогенной, поэтому

$$v_{np.} = k_{np.} \cdot [CO]^2 \cdot [O_2];$$

$$v_{o\delta p.} = k_{o\delta p.} \cdot [CO_2]^2;$$

$$K = \frac{[CO_2]^2}{[CO]^2 [O_2]}.$$

Повышение температуры сместит равновесие влево, в сторону эндотермической реакции. Количество CO_2 уменьшится.

Увеличение давления сместит равновесие в сторону меньшего объема веществ, то есть вправо в сторону продукта реакции ${\rm CO}_2$.

Увеличение концентрации O_2 приведет к увеличению $\mathcal{V}_{np.}$ и смещению равновесия вправо.

Уменьшение концентрации СО приведет к уменьшению $v_{np.}$ и превышению $v_{o\delta p.}$ над $v_{np.}$ на некоторое время. Равновесие сместится влево.

6. Напишите выражение K для равновесия $CH_{4\ (r)}+2O_{2\ (r)}\Leftrightarrow CO_{2\ (r)}+2H_2O_{(r)}$ - ΔH . Как изменится скорость прямой реакции, если при постоянной температуре увеличить концентрацию CH_4 в 4 раза, а концентрацию O_2 уменьшить в 2 раза? Куда сместится равновесие при повышении давления, при понижении температуры?

Решение: Для гомогенной реакции выражение константы равновесия запишется как

$$K = \frac{[\mathrm{CO}_2] \cdot [\mathrm{H}_2\mathrm{O}]^2}{[\mathrm{CH}_4] \cdot [\mathrm{O}_2]^2}.$$

Скорость прямой реакции зависит от концентрации исходных веществ согласно ЗДМ

$$v_{np.} = k_{np.}[\mathrm{CH}_4] \cdot [\mathrm{O}_2]^2.$$

Если изменить концентрацию CH_4 и O_2 (по условию), то скорость прямой реакции не изменится, так как

$$v'_{np} = k_{np} \cdot 4 \cdot [CH_4] \cdot \left(\frac{[O_2]^2}{2}\right) = k_{np} \cdot \frac{4}{4} [CH_4] \cdot [O_2]^2 = v_{np}.$$

При повышении давления равновесие не сместится, так как объемы исходных веществ и продуктов реакции равны.

При понижении температуры равновесие сместится в стороную экзотермической реакции, то есть вправо.

Тема № 3 «РАСТВОРЫ. КОНЦЕНТРАЦИИ РАСТВОРОВ»

- 1. Прочитайте слова и словосочетания, которые встретятся вам в тексте: раствор, растворитель, растворимое вещество, процентная концентрация, молярная концентрация, эквивалент, закон эквивалентов.
 - 2. Подберите однокоренные слова к слову раствор.
 - 3. Образуйте прилагательные от существительных процент и моль.
 - 4. Прочитайте текст и ответьте на вопросы.

Раствор — это твердая или жидкая гомогенная система, состоящая из двух или более компонентов. Выделяют два основных компонента: **растворимое вещество и растворитель**. Растворитель - это компонент, который не изменяет в растворе агрегатного состояния. Если оба компонента раствора не изменяют агрегатного состояния, то растворителем считается компонент, которого больше.

Растворы бывают насыщенными и ненасыщенными. *Насыщенный раствор* находится в равновесии с кристаллами растворяющегося вещества. Ненасыщенные растворы бывают разбавленными и концентрированными.

Состав раствора выражается через концентрации. Рассмотрим три основных вида концентраций.

Процентная концентрация — (массовая доля) показывает, сколько граммов растворенного вещества содержится в 100 г раствора

$$_{\rm III}$$
,% = $\frac{m_{\rm BeIIIeCTBa} \cdot 100 \%}{m_{\rm pactBopa}}$.

Процентная концентрация не зависит от природы вещества.

Молярная концентрация показывает, сколько г-моль растворенного вещества содержится в 1 л раствора

$$C = \frac{m}{V \cdot M}, \frac{\text{моль}}{\pi}$$
 или M,

где m - масса вещества (г) в растворе объемом V, л;

M — молярная масса, г/моль.

Нормальная (эквивалентная) концентрация показывает, сколько гэквивалентов растворенного вещества содержится в 1 л раствора

$$N = \frac{m}{\mathbf{G} \cdot V}, \frac{\Gamma - \mathbf{G} \times \mathbf{B}}{\mathbf{J}}$$
 или H,

где Э – эквивалент вещества, г/экв;

Эквиваленты сложных веществ определяются по формулам

$$\Theta_{\text{кислоты}} = \frac{M_{\text{кислоты}}}{\text{количество атомов водорода}}$$

Например,

$$\Theta_{\text{H}_2\text{SO}_4} = \frac{M_{\text{H}_2\text{SO}_4}}{2} = \frac{98}{2} = 49 \frac{\Gamma}{9\text{KB}}.$$

$$\Theta_{\text{основания}} = \frac{M_{\text{основания}}}{\text{количество гидроксильных групп}} \, .$$

Например,
$$\Theta_{\text{Ca(OH)}_2} = \frac{M_{\text{Ca(OH)}_2}}{2} = \frac{74}{2} = 37 \frac{\Gamma}{9 \text{KB}}$$
.

$$\Theta_{\text{\tiny cоли}} = \frac{M_{\text{\tiny cоли}}}{\text{степень окисления металла} \times \text{количество ионов металла в соли}}.$$

Например,
$$\exists_{\text{Cr}_2(\text{SO}_4)_3} = \frac{M_{\text{Cr}_2(\text{SO}_4)_3}}{2 \cdot 3} = \frac{390}{6} = 65 \quad \frac{\Gamma}{\text{Экв.}}.$$

Закон эквивалентов: объемы растворов реагирующих веществ обратно пропорциональны их нормальным концентрациям

$$\frac{V_1}{V_2} = \frac{N_2}{N_1}$$
 или $V_1 \cdot N_1 = V_2 \cdot N_2$.

Закон эквивалентов - следствие того, что вещества реагируют в эквивалентных количествах. По закону эквивалентов можно определять объемы и концентрации реагирующих веществ.

Примеры решения задач

1. Сколько граммов растворенного вещества содержится в 400 г 60 % раствора?

$$\mathcal{L}$$
ано:
 $\omega = 60 \%$
 $m_{\text{p-pa}} = 400 \ \Gamma$

Решение:

Вариант 1

Вариант 1 Из формулы для определения процентной концентрации выразим m_{B-Ba}

POF Transconder

 $m_{\text{B-Ba}}$ -?

$$m_{e-ea} = \frac{m_{p-pa} \cdot \text{III}}{100} = \frac{400 \cdot 60}{100} = 240 \ \Gamma$$

Вариант 2

Задачу можно решить с использованием пропорции

100 г раствора содержат 60 г растворенного вещества

 $400 \, \Gamma$ раствора - $m \, \Gamma$ растворенного вещества.

$$m = \frac{400 \cdot 60}{100} = 240 \,\mathrm{r}$$

Ответ: 240 г

2. Вычислить процентную концентрацию соли в растворе, полученном при растворении 50 г KCl в 350 г воды.

$$_{\rm H_{2O}}^{\rm Haho:}$$
 $m_{_{\rm B-Ba}} = 50~{\rm f}$ $m_{_{\rm H_{2}O}} = 350~{\rm f}$

 ω - ?

Решение:

а) Найдем массу раствора

$$m_{_{p-pa}}=m_{_{_{B-Ba}}}+m_{_{H_2\mathrm{O}}}=\!50+350=400_\Gamma$$

б) Найдем процентную концентрацию раствора

$$\mathbf{m}\% = \frac{m_{\text{вещества}} \cdot 100\%}{m_{\text{раствора}}} = \frac{50 \cdot 100}{400} = 12,5\%$$

Ответ: 12,5 %

3. Приготовьте 40 % раствор соли, если имеется 120 г растворителя? Какая масса соли Вам потребуется? Сколько граммов раствора Вы получите?

$$\mathcal{A}$$
ано: $\omega = 40 \%$ $m_{\mathrm{H}_2\mathrm{O}} = 120\mathrm{r}$

 $m_{\text{\tiny B-Ba}}$ - ? $m_{\text{\tiny p-pa}}$ - ?

а) Раствор является 40 %-ным по соли и 60 %-ным по воде. Найдем массу раствора

$$\mathbf{m}_{\mathrm{H}_2\mathrm{O}} = \frac{m_{\mathrm{H}_2\mathrm{O}} \cdot 100 \%}{m_{\mathrm{p-pa}}}$$
или

$$m_{\text{p-pa}} = \frac{m_{\text{H}_2\text{O}} \cdot 100}{\text{III}_{\text{H}_2\text{O}}} = \frac{120 \cdot 100}{60} = 200 \text{ }\Gamma$$

б) Найдем массу соли

$$m_{\text{\tiny B-Ba}} = m_{\text{\tiny p-pa}} - m_{\text{\tiny H}_2\text{\tiny O}} = 200 - 120 = 80 \ \Gamma$$

Ответ: 80 г, 200 г

4. В каком объеме 0,1 М и 0,1 Н растворов содержится 8 г CuSO₄?

Дано:
$$C=0,1 \text{ M}$$
 $N=0,1 \text{ H}$ $m=8 \text{ }\Gamma$

$$V_1$$
 - ? V_2 - ?

Решение:

а) Найдем массу $CuSO_4$, которая содержится в 1 л 0,1 M и 0,1 H растворов

$$m_1 = C \cdot M \cdot V = 0, 1 \cdot 160 = 16 \,\Gamma$$

$$M_{{\rm CuSO}_4} = 64 + 32 + 4 \cdot 16 = 160$$
 г/моль

$$m_2 = N \cdot 9 \cdot V = 0, 1 \cdot 80 \cdot 1 = 8 \text{ } \Gamma$$

$$\Theta_{\text{cuso}_4} = \frac{M_{\text{CuSO}_4}}{2} = \frac{160}{2} = 80$$
 г/экв.

б) Найдем объемы V_1 и V_2 : 1000 мл раствора содержат 16 г CuSO₄ V_1 мл - 8 г

$$V_1 = \frac{1000 \cdot 8}{16} = 500 \text{ мл}$$

1000 мл раствора содержат 8 г CuSO₄ V_2 мл $\,$ - 8 г

$$V_2 = \frac{1000 \cdot 8}{8} = 1000$$
 мл.

Ответ: 500 мл, 1000мл

5. Для нейтрализации 20 мл 0,1 H раствора кислоты потребовалось 8 мл раствора NaOH. Определите нормальную концентрацию раствора щелочи.

$$\mathcal{A}$$
ано:
 $V_1 = 20$ мл
 $V_2 = 8$ мл
 $N_1 = 0,1$ Н

Решение:

Воспользуемся законом эквивалентов

$$V_1 \cdot N_1 = V_2 \cdot N_2$$
.

Отсюда
$$N_2 = \frac{V_1 \cdot N_1}{V_2} = \frac{20 \cdot 0,1}{8} = 0,25 \,\mathrm{H}$$

Ответ: 0,25 Н

6. Смешали 400 г 50 % раствора и 100 г 70 % раствора сахара. Какой массы и концентрации получится новый раствор?

$$\mathcal{L}$$
ано:
 $m_{1\text{p-pa}} = 400 \ \Gamma$
 $m_{2\text{p-pa}} = 100 \ \Gamma$
 $\omega_1 = 50 \%$
 $\omega_2 = 70 \%$
 $\omega_3 - ?$

Решение:

а) Найдем массу сахара в первом растворе

$$m_{1_{\mathrm{B-Ba}}} = \frac{\mathrm{III_{l}} \cdot m_{1_{\mathrm{p-pa}}}}{100} = \frac{50 \cdot 400}{100} = 200 \ \Gamma$$

б) Найдем массу сахара во втором растворе

$$m_{2_{\mathrm{B-Ba}}} = \frac{\mathrm{III}_2 \cdot m_{2\mathrm{p-pa}}}{100} = \frac{70 \cdot 100}{100} = 70 \ \Gamma$$

в) Найдем массу сахара в образовавшемся растворе

$$m_{3 \text{ B-Ba}} = m_{1 \text{B-Ba}} + m_{2 \text{ B-Ba}} = 200 + 70 = 270 \text{ }\Gamma$$

г) Найдем массу образовавшегося раствора

$$m_{3\text{p-pa}} = m_{1\text{p-pa}} + m_{2\text{p-pa}} = 400 + 100 = 500 \text{ }\Gamma$$

д) Найдем процентную концентрацию образовавшегося раствора

$$\underline{\mathbf{m}}_{3} = \frac{m_{3_{B-Ba}} \cdot 100\%}{m_{3p-pa}} = \frac{270 \cdot 100}{500} = 54 \%.$$

Ответ: 500 г, 54 %.

ТЕМА № 4 "ДИССОЦИАЦИЯ ЭЛЕКТРОЛИТОВ. МОЛЕКУЛЯРНО-ИОННЫЕ РЕАКЦИИ"

- 1. Познакомьтесь со специальными терминами, которые встретятся в тексте: электролиты, степень диссоциации, константа диссоциации.
 - 2. Обратите внимание на синонимы диссоциировать распадаться.
- 3. Прочитайте текст и ответьте на вопрос: Как диссоциируют электролиты в растворе?

Электролиты — это жидкие или твердые вещества, в которых присутствуют ионы, способные перемещаться и проводить электрический ток.

Согласно теории электролитической диссоциации электролиты в воде распадаются (диссоциируют) на ионы. Обратный процесс называется ассоциация. Положительные ионы называются катионами (Na⁺, Cu²⁺, Al³⁺, H⁺), отрицательные ионы – анионами (NO₃⁻, Cl⁻, SO₄²⁻, PO₄³⁻, OH⁻).

Степень диссоциации (α)- это отношение числа молекул, которые распались на ионы, к общему числу молекул в растворе. По величине α определяют силу электролита.

Если
$$\alpha < 3 \%$$
 - слабый электролит;

3 %< α <30 % - электролит средней силы; α >30 % - сильный электролит.

Степень диссоциации а возрастает с разбавлением раствора.

K сильным электролитам относятся почти все соли, кислоты: HCl, HBr, HI, HNO₃, H₂SO₄; основания (щелочи): LiOH, NaOH, KOH, Ca(OH)₂, Ba(OH)₂. Сильные электролиты диссоциируют в растворе полностью. Главная форма их существования в растворе - ионы. Процессы полной электролитической диссоциации:

для кислоты $H_2SO_4 \Leftrightarrow 2H^+ + SO_4^{2-}$;

для основания $Ca(OH)_2 \Leftrightarrow Ca^{2+} + 2OH^-;$

для соли $FeCl_3 \Leftrightarrow Fe^{3+} + 3Cl^-$.

Основные и кислые соли диссоциируют следующим образом:

 $MgOHCl \Leftrightarrow MgOH^+ + Cl^-$ основная соль

KHSiO $_3 \Leftrightarrow$ K $^+$ + HSiO $_3$. $^-$

Степень диссоциации солей тем больше, чем меньше заряды ионов. Например, в ряду солей натрия: NaCl, Na₂SO₄, Na₃PO₄, степень диссоциации α уменьшается.

К слабым электролитам относятся кислоты HF, HCN, HCNS, H_2S , H_2CO_3 , H_2SiO_3 , H_3PO_4 , органические кислоты; основания: NH_4OH и другие, которые не являются щелочами. В уравнениях они пишутся в виде молекул. Например, взаимодействие H_2S и NaOH можно выразить уравнениями:

молекулярным $H_2S + 2NaOH \Leftrightarrow Na_2S + 2H_2O;$

молекулярно-ионным $H_2S + 2Na^+ + 2OH^- \Leftrightarrow 2Na^+ + S^{2-} + 2H_2O$,

в котором слабые электролиты записаны в виде молекул, а сильные - в виде ионов:

в сокращенном ионном виде $H_2S + 2OH^- \Leftrightarrow S^{2-} + 2H_2O$.

Электролиты средней силы диссоциируют ступенчато. *Константа диссоциации* $(K_{\rm д})$ – количественная характеристика процесса диссоциации. $K_{\rm д}$ - это константа равновесия, отвечающая диссоциации слабого электролита. Например, ступенчатая диссоциация двухосновной кислоты $H_2{\rm CO}_3$ выражается уравнениями:

I ступень
$$H_2CO_3 \Leftrightarrow H^+ + HCO_3^-$$
; $K_{A_1} = \frac{[H^+] \cdot [HCO_3^-]}{[H_2CO_3]}$;

II ступень
$$HCO_3^- \Leftrightarrow H^+ + CO_3^{2-}; \quad K_{_{\mathcal{I}_2}} = \frac{[H^+] \cdot [CO_3^{2-}]}{[HCO_3^-]};$$

$$K_{_{\mathcal{I}_2}} \circ \mathcal{K}_{_{\mathcal{I}_2}} = \frac{[H^+]^2 \cdot [CO_3^{2-}]}{[H_2CO_3]}.$$

Задание. Напишите схему классификации электролитов по степени диссоциации. Используя схему и логический план текста (перечень ведущих тем), перескажите текст.

План

- 1. Диссоциация электролитов.
- 2. Молекулярно-ионные реакции.

Примеры решения задач

1. Запишите процесс ступенчатой диссоциации слабой кислоты H_3BO_3 и ступенчатые константы диссоциации.

Решение: Трёхосновная кислота имеет три ступени диссоциации:

1 ступень
$$H_3BO_3 \Leftrightarrow H^+ + H_2BO_3^-$$
;
2 ступень $H_2BO_3^- \Leftrightarrow H^+ + HBO_3^{2-}$;
3 ступень $HBO_3^{2-} \Leftrightarrow H^+ + BO_3^{3-}$.

Ступеням диссоциации соответствуют константы диссоциации:

$$K_{\mu_{1}} = \frac{[H^{+}] \cdot [H_{2}BO_{3}^{-}]}{[H_{3}BO_{3}]};$$

$$K_{\mu_{2}} = \frac{[H^{+}] \cdot [HBO_{3}^{2-}]}{[H_{2}BO_{3}^{-}]};$$

$$K_{\mu_{3}} = \frac{[H^{+}] \cdot [BO_{3}^{3-}]}{[HBO_{3}^{2-}]}.$$

2. Запишите процесс ступенчатой диссоциации слабого основания Fe(OH)₃ и ступенчатые константы диссоциации.

Решение: Трехкислотное основание имеет три ступени диссоциации:

1 ступень
$$Fe(OH)_3 \Leftrightarrow OH^- + Fe(OH)_2^+;$$

2 ступень $Fe(OH)_2^+ \Leftrightarrow OH^- + FeOH^{2+};$
3 ступень $FeOH^{2+} \Leftrightarrow OH^- + Fe^{3+}.$

Ступеням диссоциации соответствуют константы диссоциации:

$$K_{_{\mathcal{I}_{1}}} = \frac{[\mathrm{OH}^{-}] \cdot [\mathrm{Fe}(\mathrm{OH})_{2}^{+}]}{[\mathrm{Fe}(\mathrm{OH})_{3}]};$$

$$K_{\mu_2} = \frac{[OH^-] \cdot [FeOH^{2+}]}{[Fe(OH)_2^+]};$$

$$K_{_{\mathrm{A}_{3}}} = \frac{[\mathrm{OH}^{-}] \cdot [\mathrm{Fe}^{3+}]}{[\mathrm{FeOH}^{2+}]}.$$

3. Запишите в молекулярном и ионном виде реакцию взаимодействия между: сульфидом натрия и сульфатом меди (II).

Решение: В молекулярном виде уравнение реакции записывается как

$$Na_2S+CuSO_4 \rightarrow CuS \downarrow + Na_2SO_4$$
,

в ионном виде

$$2 \text{ Na}^+ + \text{S}^{2-} + \text{Cu}^{2+} + \text{SO}_4^{2-} \rightarrow \text{CuS} \downarrow +2 \text{ Na}^+ + \text{SO}_4^{2-},$$

в сокращенном ионном виде

$$Cu^{2+} + S^{2-} \rightarrow CuS \downarrow$$
.

Малорастворимая соль CuS записывается в виде молекулы.

Тема № 5 «ВОДОРОДНЫЙ ПОКАЗАТЕЛЬ»

Прочитайте текст и ответьте на вопрос: Чему равны водородный и гидроксильный показатели?

Вода – очень слабый электролит, но она в малой степени диссоциирует по реакции

$$H_2O \Leftrightarrow H^+ + OH^-$$

Этому процессу соответствует константа диссоциации или

$$[H^+] \cdot [OH^-] = K_{\pi} \cdot [H_2O] = K_{H_2O} = 10^{-14},$$

где [H_2O] постоянная величина, равная 55,55 моль/л.

Константа $K_{\rm H_2O}$, равная произведению концентраций ионов ${\rm H^+}$ и ${\rm OH^-}$, представляет собой постоянную величину и называется ионным произведением воды.

В нейтральном растворе $[H^+] = [OH^-] = 10^{-7}$ моль/л;

В кислых растворах $[H^+] > 10^{-7}$ моль/л;

В щелочных растворах $[H^+] < 10^{-7}$ моль/л.

Водородный показатель $pH = -lg[H^+]$.

 Γ идроксильный показатель $pOH = -lg[OH^-]$.

B нейтральном растворе pH = 7, pOH = 7;

В кислых растворах pH < 7, pOH > 7;

В щелочных растворах pH > 7, pOH < 7.

Взаимосвязь между показателями рН и рОН

$$pH + pOH = 14$$
.

Примеры решения задач

Определите pH, pOH и $[OH^-]$ в растворе с $[H^+] = 10^{-13}$ моль/л. Укажите среду раствора.

Дано:

$$[H^+] = 10^{-13} \text{ моль/л}$$
 $[OH^-], \text{ pH, pOH -}?$

Решение:

а) Определим [OH $^-$], используя ионное произведение воды $K_{\mathrm{H},\mathrm{O}}$

$$[OH^-] = \frac{10^{-14}}{[H^+]} = \frac{10^{-14}}{10^{-13}} = 10^{-1}$$
 моль/л

б) Определим рН

$$pH = -lg [H^+] = -lg 10^{-13} = 13 > 7,$$

среда раствора щелочная.

в) Определим рОН

$$pOH = 14 - pH = 14 - 13 = 1 < 7,$$

среда раствора щелочная.

Ответ: $[OH^{-}] = 10^{-1}$ моль/л; pH = 13; pOH = 1; щелочной раствор.

2.Определите $[H^+]$, $[OH^-]$ и pH, если pOH раствора равен 8. Укажите среду раствора.

Дано:

Решение:

а) Определим рН

$$pH = 14 - pOH = 14 - 8 = 6 < 7$$
,

среда раствора кислая.

б) Определим [Н⁺], используя формулу

$$pH = -\lg [H^+]$$
 или

$$[H^{+}] = 10^{-pH} = 10^{-6}$$
 моль/л

в) Определим $[OH^-]$, используя ионное произведение воды

$$[OH^-] = \frac{10^{-14}}{[H^+]} = \frac{10^{-14}}{10^{-6}} = 10^{-8}$$
 моль/л

Ответ: pH = 6; $[H^+] = 10^{-6}$ моль/л; $[OH^-] = 10^{-8}$ моль/л; кислый раствор.

Тема № 6 «ГИДРОЛИЗ СОЛЕЙ»

- 1. Познакомьтесь с лексикой, необходимой для понимания текста: гидролиз, гидролиз соли, гидролиз солей, ступени гидролиза.
 - 2. Прочитайте текст и ответьте на вопросы.

 $\it Fudponu3$ - это взаимодействие вещества с водой, при котором части вещества соединяются с частями воды ($\it H^+$ и OH). В ходе гидролиза изменяется pH раствора.

По отношению к гидролизу соли можно разделить на 4 группы.

- **1 группа**: соль образована сильной кислотой и сильным основанием (KCl, NaNO₃, Li₂SO₄);
- **2 группа**: соль образована сильной кислотой и слабым основанием $(ZnCl_2, Cu(NO_3)_2, FeSO_4);$
- **3 группа**: соль образована слабой кислотой и сильным основанием (Na₂S, K_2CO_3 , Li₂SO₃);
- **4 группа**: соль образована слабой кислотой и слабым основанием $((NH_4)_2S, Cu(CH_3COO)_2)$.

Соли 1 группы гидролизу не подвергаются.

Растворы солей 2 группы при гидролизе имеют кислую среду (pH<7). Ступени гидролиза для соли $Cu(NO_3)_2$:

I ступень
$$Cu(NO_3)_2 + HOH \Leftrightarrow CuOHNO_3 + HNO_3$$
, основная соль

в ионно-молекулярном виде

$$Cu^{2+} + 2NO_{3-} + HOH \Leftrightarrow CuOH^{+} + NO_{3-} + H^{+} + NO_{3-}$$

в сокращённом ионно-молекулярном виде

$$Cu^{2+} + HOH \Leftrightarrow CuOH^{+} + H^{+}$$
.

II ступень $CuOHNO_3 + HOH \Leftrightarrow Cu(OH)_2 + HNO_3$,

в ионно-молекулярном виде

$$CuOH^{+} + NO_{3}^{-} + HOH \Leftrightarrow Cu(OH)_{2} + H^{+} + NO_{3}^{-}$$

в сокращённом ионно-молекулярном виде

$$CuOH^{+} + HOH \Leftrightarrow Cu(OH)_{2} + H^{+}$$
.

Растворы солей 3 группы при гидролизе имеют щелочную среду (pH>7). Ступени гидролиза для соли Na₂CO₃.

I ступень
$$Na_2CO_3 + HOH \Leftrightarrow NaHCO_3 + NaOH$$
, кислая соль

в ионно-молекулярном виде

$$2Na^{+} + CO_{3}^{2-} + HOH \Leftrightarrow Na^{+} + HCO_{3}^{-} + Na^{+} + OH^{-}$$

в сокращённом ионно-молекулярном виде

$$CO_3^{2-}$$
 + HOH \Leftrightarrow HCO₃⁻ + OH⁻.

II ступень NaHCO $_3$ + HOH \Leftrightarrow H $_2$ CO $_3$ + NaOH,

в ионно-молекулярном виде

$$Na^{+} + HCO_{3}^{-} + HOH \Leftrightarrow H_{2}CO_{3} + Na^{+} + OH_{3}^{-}$$

в сокращённом ионно-молекулярном виде

$$HCO_3^- + HOH \Leftrightarrow H_2CO_3 + OH^-$$
.

Растворы солей 4 группы при гидролизе имеют реакцию, близкую к нейтральной (р $H\approx7$). Гидролиз соли (NH_4)₂S идет сразу до конца по двум ступеням

$$(NH_4)_2S + 2HOH \Leftrightarrow 2NH_4OH + H_2S$$
,

в ионно-молекулярном виде

$$2N{H_4}^+ + S^{2\text{-}} + 2HOH \Leftrightarrow 2NH_4OH + H_2S.$$

В ходе гидролиза образуются 2 слабых электролита, гидролиз идет до конца. pH раствора определяется при сравнении степеней диссоциации слабой кислоты и слабого основания: $\sigma_{NH_4OH}=1,3\%$; $\sigma_{H_2S}=0,07\%$. Так как $\sigma_{H_2S}<\sigma_{NH_4OH}$, то раствор будет иметь слабощелочную реакцию или $\sigma_{NH_2OH}=1$.

Факторы, усиливающие гидролиз солей. Гидролиз усиливается при повышении температуры, разбавлении раствора и введении противоионов: для солей 2 группы ионов OH^- , для солей 3 группы H^+ ионов.

Совместный гидролиз солей протекает при смешивании растворов солей 2 и 3 группы. В одном растворе гидролиз солей усиливается друг другом. Гидролиз идет до конца в одну стадию. Рассмотрим совместный гидролиз солей Na₂S (3 группа) и FeCl₃ (2 группа):

в ионно-молекулярном виде

$$S^{2^{-}} + 2HOH \Leftrightarrow H_{2}S + 2OH 3$$

 $Fe^{3^{+}} + 3OH \Leftrightarrow Fe(OH)_{3} + 3H 2$
 $3S^{2^{-}} + 2Fe^{3^{+}} + 12HOH \Leftrightarrow 3H_{2}S + 2Fe(OH)_{3} + 6HOH,$
 $3S^{2^{-}} + 2Fe^{3^{+}} + 6HOH \Leftrightarrow 3H_{2}S + 2Fe(OH)_{3},$

в молекулярном виде

$$3\text{Na}_2\text{S} + 2\text{FeCl}_3 + 6\text{HOH} \Leftrightarrow 3\text{H}_2\text{S}\uparrow + 2\text{Fe(OH)}_3\downarrow + 6\text{NaCl}.$$

Продукты гидролиза выходят из зоны реакции.

Вопросы: 1. Что называется гидролизом?

Что изменяется в ходе гидролиза?

На какие группы можно разделить соли по отношению к гидролизу?

Соли какой группы не подвергаются гидролизу?

Какие факторы усиливают гидролиз?

Как протекает совместный гидролиз солей?

Задание. Разделите текст «Гидролиз солей» на смысловые отрезки. Выпишите по одному предложению из каждого смыслового отрезка. На основе выделенных вами предложений составьте номинативный план. Перескажите текст по плану.

Примеры решения задач

1. Укажите среду водных растворов солей

LiNO₃, K₂CO₃, CaSO₄, ZnCl₂, NH₄I, Na₂SO₄, Fe(HCOO)₃.

Решение: Реакция водных растворов солей определяется силой кислот и оснований их образовавших:

-соль $LiNO_3$ образована сильной кислотой HNO_3 и сильным основанием LiOH (I группа) - соль гидролизу не подвергается;

-соль $K_2\mathrm{CO}_3$ - слабая кислота $H_2\mathrm{CO}_3$ и сильное основание КОН (III группа) - щелочная среда;

-соль $CaSO_4$ - сильная кислота H_2SO_4 и сильное основание $Ca(OH)_2$ (І группа)- соль гидролизу не подвергается;

-соль $ZnCl_2$ -сильная кислота HCl и слабое основание $Zn(OH)_2$ (II группа)- кислая среда (pH<7);

-соль NH_4I -сильная кислота HI и слабое основание NH_4OH (II группа)-кислая среда (pH<7);

-соль Na_2SO_4 -сильная кислота H_2SO_4 и сильное основание NaOH (I группа)- соль гидролизу не подвергается;

-соль $Fe(HCOO)_3$ -слабая кислота HCOOH и слабое основание $Fe(OH)_3$ (IV группа)- среда близкая к нейтральной.

2. Напишите уравнение гидролиза солей $Zn(NO_3)_2$ и Na_2S по I ступени в молекулярном, молекулярно-ионном и сокращённом молекулярно-ионном

виде. Укажите среду водных растворов этих солей.

Решение: Соль $Zn(NO_3)_2$ относится ко 2 группе, так как она образована сильной кислотой HNO_3 и слабым основанием $Zn(OH)_2$. При гидролизе соли $Zn(NO_3)_2$ среда раствора кислая (pH<7):

I ступень
$$Zn(NO_3)_2 + HOH \Leftrightarrow ZnOHNO_3 + HNO_3$$
, основная соль

в ионно-молекулярном виде

$$Zn^{2+} + 2NO_3^- + HOH \Leftrightarrow ZnOH^+ + NO_3^- + H^+ + NO_3^-$$

в сокращённом ионно-молекулярном виде

$$Zn^{2+} + HOH \Leftrightarrow ZnOH^+ + H^+$$
.

Соль Na_2S относится к 3 группе, так как она образованна слабой кислотой H_2S и сильным основанием NaOH.

При гидролизе соли Na₂S среда раствора щелочная (рH>7):

$$I$$
 ступень $Na_2S + HOH \Leftrightarrow NaHS + NaOH , кислая соль$

в ионно-молекулярном виде

$$2Na^{+} + S^{2-} + HOH \Leftrightarrow Na^{+} + HS^{-} + Na^{+} + OH^{-}$$

в сокращённом ионно-молекулярном виде

$$S^{2-} + HOH \Leftrightarrow HS^{-} + OH^{-}$$
.

3. Укажите способы смещения равновесия реакций гидролиза вправо:

$$Fe^{2^{+}} + HOH \Leftrightarrow FeOH^{+} + OH^{-},$$

 $FeOH^{+} + HOH \Leftrightarrow Fe(OH)_{2} + H^{+}.$

Peшение: Протекает гидролиз соли Fe(II), образованной сильной кислотой, например, это могут быть соли $FeCl_2$, $FeSO_4$, $Fe(NO_3)_2$, $FeBr_2$. Для смещения равновесия реакций гидролиза вправо или для ускорения гидролиза можно повысить температуру, разбавить раствор водой, ввести противоионы (в данном случае OH^-).

Тема № 7 "ХИМИЧЕСКИЕ ИСТОЧНИКИ ТОКА"

- 1. Познакомьтесь с лексикой, необходимой для понимания текста: гальванический элемент, электродвижущая сила (ЭДС), концентрационный гальванический элемент.
 - 2. Прочитайте текст и ответьте на вопросы.

В электрохимии существуют два направления:

- получение электрического тока за счет химической реакции;

- протекание химических процессов под действием электрической тока.

Первое направление используют в химических источниках тока, второе - при электролизе.

На поверхности металлов в растворах образуется двойной электрический слой. Он обусловливает скачок потенциала (E). Стандартные потенциалы металлов (E^0) приведены в ряду напряжений металлов (см. Приложение). Стандартные потенциалы измерены на металле, погруженном в 1 моль/л раствор собственной соли, против водородного электрода. Потенциал водородного электрода принят за ноль. На водородном электроде протекает реакция

$$2H^+ + 2e \Leftrightarrow H_2$$
.

Он обозначается $Pt(H_2)/H^+$.

В ряду напряжений металлов указаны стандартные потенциалы реакций

$$Me^{n+} + ne \Leftrightarrow Me^{\circ}$$
.

Электродные потенциалы зависят от природы, концентрации вещества и температуры системы. Эти зависимости выражаются формулой Нернста

$$E = E^{0} + \frac{2,3RT}{nF} \lg C = E^{0} + \frac{0,058}{n} \lg C;$$

где R - универсальная газовая постоянная (8,31 Дж/моль·К);

T - температура, K;

F - число Фарадея (96500 Кл/моль);

C - молярная концентрация, моль/л.

Гальванические элементы - это устройства для преобразования химической энергии в электрическую. Рассмотрим устройство медноцинкового элемента (элемент Якоби-Даниэля). Две пластины металлов Си и Zn погружены в растворы собственных солей CuSO₄ и ZnSO₄. Растворы разделены мембраной (рис.1).

Zn является более активным металлом, он расположен в ряду напряжений металлов выше Cu. Zn будет окисляться. На меди как менее активном металле будет протекать реакция восстановления ионов Cu^{2+} .

Электродные реакции:

A(-)
$$Zn^{\circ} - 2\overline{e} \to Zn^{2+}$$
 (реакция окисления),
K(+) $Cu^{2+} + 2\overline{e} \to Cu^{\circ}$ (реакция восстановления).

Общее электрохимическое уравнение

$$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu^{\circ}$$

$$Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$$
.

Электрод, на котором протекает окисление, называется анодом. Он заряжен отрицательно, на нем создается избыток отрицательных зарядов (Zn - анод). Электрод, на котором протекает восстановление, называется катодом, он заряжен положительно (Cu - катод).

Схема гальванического элемента

$$A(-) \quad \overline{Zn|ZnSO_4||CuSO_4||Cu} \quad (+)K$$

$$\downarrow \qquad SO_4^{2-}$$

По внешней цепи ток движется от анода к катоду. По внутренней цепи через мембрану переносятся анионы SO_4^{2-} .



Рисунок 1- Гальванический элемент Якоби-Даниэля

Расчет электродвижущей силы (ЭДС)

ЭДС рассчитывают по разности между потенциалом катода и потенциалом анода по формуле

ЭДС =
$$E_{\kappa}$$
 - E_{a} .

Если концентрации солей неизвестны, то используют *приближенный метод расчета ЭДС* по значениям стандартных потенциалов по формуле

ЭДС
$$^{0} = E_{\kappa}^{0} - E_{a}^{0}$$
.

Например, для медно-цинкового электрода

ЭДС =
$$E^0_{\text{Cu}}$$
- E^0_{Zn} = 0,34 - (-0,76) = 1,1 В.

Если концентрации солей известны, то используют *точный метод расчета* \mathcal{I} с использованием формулы Нернста. Например, рассчитаем \mathcal{I} С медно-цинкового элемента, если $C_{\text{Cu}}^{2+} = 1$ моль/л; $C_{\text{Zn}}^{2+} = 0,0001$ моль/л.

ЭДС =
$$E_{\kappa}$$
 - E_{a} .

Расчет E_{κ} и E_{a} :

$$E_{\kappa} = E_{\text{Cu}} = E_{\text{Cu}}^{0} + \frac{0.058}{n} \lg C_{\text{Cu}^{+2}} = 0.34 + \frac{0.058}{2} \lg 1 = 0.34 \text{ B};$$

$$E_{\rm a} = E_{\rm Zn} = E_{\rm Zn}^0 + \frac{0.058}{2} \lg 10^{-4} = -0.76 - \frac{4 \cdot 0.058}{2} = -0.876 \,\mathrm{B},$$

отсюда

ЭДС =
$$E_{\kappa}$$
 - E_{a} = 0,34 - (-0,876) = 1,216 В.

Концентрационный гальванический элемент имеет электроды, изготовленные из одного и того же металла, но они опущены в растворы соли различной концентрации. Например, схема серебряного концентрационного элемента

$$A(-)$$
 $Ag|AgNO_3||AgNO_3||Ag$ $(+)K$.

Для работы элемента необходимо, чтобы концентрация соли в катодном отделении была выше, чем концентрация соли в анодном отделении $C_a < C_\kappa$. Чем это неравенство больше, тем выше ЭДС элемента. ЭДС элемента рассчитывается по формуле

ЭДС =
$$0.058 \lg \frac{C_{\kappa}}{C_{a}}$$
.

Вопросы: 1. Какие направления существуют в электрохимии?

- 2. Где используются эти направления?
- 3. От чего зависят электродные потенциалы?
- 4. Какой формулой выражаются эти зависимости?
- 5. Какие устройства называются гальваническими элементами?
- 6. Какие методы расчета электродвижущей силы Вы знаете?
- 7. Какие особенности имеет концентрационный гальванический элемент?

Задание. Запишите основную информацию текста в виде тезисов. Перескажите текст, пользуясь составленными тезисами.

Примеры решения задач

1. Рассчитайте электродный потенциал магния в растворе его соли при концентрации ионов $Mg^{2+} = 0.01$ моль/л.

$$\mathcal{L}_{Mg^{2+}} = 0,1$$
 моль/л $E^0_{Mg^{2+/Mg}} = 2,36$ В $E-?$

Решение:

Рассчитываем Е по формуле Нернста

$$E = E^{0} + \frac{0,058}{n} \lg C = -2,36 + \frac{0,058}{2} \lg 10^{-1} =$$

= -2,36 - 0,029 = -2,389 B

Ответ: -2,389 В

2. Составьте схему железо - свинцового гальванического элемента, напишите уравнения электродных реакций, рассчитайте приближенное значение ЭДС.

Дано:

$$E^{0}_{Fe^{2+}/Fe} = 0,44 \text{ B}$$

 $E^{0}_{Pb^{2+}/Pb} = 0,13 \text{ B}$

Решение: Согласно ряду напряжений металлов анодом, Pb – катодом. Схема является гальванического элемента:

A(-)
$$Fe|Fe(NO_3)_2|Pb(NO_3)_2|Pb$$
 (+)K
$$NO_3^-$$

ЭЛС - ?

Соли металлов $Fe(NO_3)$, и $Pb(NO_3)$, должны быть растворимыми, что проверяют по таблице растворимости.

Электродные реакции:

$$A(-)$$
 $Fe^{\circ} - 2\overline{e} \rightarrow Fe^{2+}$

$$K(+)$$
 $Pb^{2+} + 2\overline{e} \rightarrow Pb^{\circ}$

Расчет ЭДС:

ЭДС =
$$E^0_{Pb} - E^0_{Fe}$$
 = - 0,13 - (- 0,44) = 0,31 В

Ответ: 0,31 В

3. Составьте схему, напишите электродные уравнения и вычислите ЭДС медно - хромового гальванического элемента, в котором ${C_{
m Cr}}^{^{3+}}=0.8$ моль/л, $C_{\text{Cu}}^{2+} = 0.01$ моль/л.

Дано:
$$C_{\text{Cr}}^{3+} = 0.8 \text{ моль/л}$$

Решение:

Дано: Решение: $C_{\rm Cr}^{3+} = 0.8$ моль/л а) Для составления схемы гальванического $C_{\rm Cu}^{2+} = 0.01$ моль/л элемента необходимо подобрать растворимые соли

ЭДС - ?

меди (II) и хрома (III). Используем таблевы растворимости. Можно предложить соли: хлориды, бромиды, нитраты, сульфаты. Составим схему гальванического элемента с электролитами CrCl₃ и CuCl₂:

$$A(-)$$
 $Cr|CrCl_3||CuCl_2|Cu$ (+) K

Так как хром стоит выше, чем медь в ряду напряжений металлов, то он является анодом, а Cu - катодом.

б) Электронные уравнения электродных реакций:

$$A(-)$$
 $Cr^{\circ} - 3\overline{e} \rightarrow Cr^{3+}$ – реакция окисления

$$K(+)$$
 $Cu^{2+} + 2\overline{e} \rightarrow Cu^{\circ} -$ реакция восстановления

в) Расчет ЭДС приближенным методом

ЭДС =
$$E_{\kappa}^{0} - E_{a}^{0} = E_{Cu}^{0} - E_{Cr}^{0} = 0.34 - (-0.744) = 0.34 + 0.744 = 1.084 B$$

г) Расчет ЭДС точным методом

ЭДС =
$$E_{\text{к}} - E_{\text{a}} = E_{\text{Cu}} - E_{\text{Cr}}$$

$$E_{\text{Cu}} = E_{\text{Cu}}^{\circ} + \frac{0,058}{2} \lg C = 0,34 + \frac{0,058}{2} \lg 10^{-2} = 0,34 - \frac{2 \cdot 0,058}{2} = 0,282 \text{ B}$$

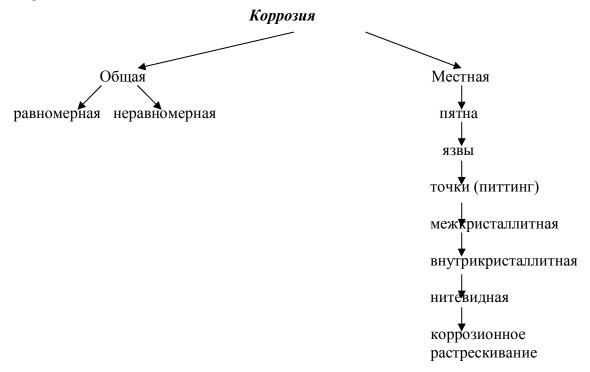
$$E_{\rm Cr} = E_{\rm Cr}^{\circ} + \frac{0,058}{3} \lg 0,8 = -0,744 - \frac{0,0969 \cdot 0,058}{3} = -0,746 \text{ B}$$

ЭДС =
$$E_{\text{Cu}}$$
 - E_{Cr} = -0,282 - (-0,746) = 1,028 В

Ответ: 1,028 В

Тема № 8 «КОРРОЗИЯ МЕТАЛЛОВ»

- 1. Прочитайте слова и словосочетания, которые встретятся вам в тексте: коррозия, коррозионные процессы по виду поражений, коррозии по механизму протекания, химическая коррозия, газовая коррозия, коррозия в среде неэлектролита, электрохимическая коррозия, контактная коррозия, анодные покрытия, катодные покрытия, протектор.
 - 2. Обратите внимание на синонимы: корродировать окисляться.



Коррозия- это процесс разрушения металлов при их химическом или электрохимическом взаимодействии с окружающей средой.

Существует две классификации коррозионных процессов: классификация по виду поражений и по механизму протекания.

Классификация коррозионных процессов по виду поражений

Классификация коррозии по механизму протекания

Химическая коррозия - это коррозия в отсутствие электролита, протекающая при высоких температурах. По условиям протекания химическая коррозия делится на газовую и в среде неэлектролита.

Газовая коррозия протекает в газах при высоких температурах в отсутствие влаги.

Коррозия в среде неэлектролита протекает в органических маслах, нефтяных маслах, горячей среде, бромной воде.

Электрохимическая коррозия - это коррозия в среде электролита. Она сопровождается образованием микрогальванических пар и появлением электрического тока. По условиям протекания электрохимическая коррозия делится на атмосферную, при различном доступе кислорода, контактную, почвенную, морскую, фреттинг (совместное действие сил трения и

агрессивной среды), кавитацию (ударное воздействие коррозионной среды, коррозию под действием блуждающих токов.

Контактная коррозия возникает при контакте двух или более металлов друг с другом в среде электролита. Определим анодный полюс согласно ряду напряжений металлов. Например, а) Fe | Zn(A); б) Fe(A) | Sn; в) Fe(A) | Cu.

Анодные реакции

a)
$$A(-) Zn - 2\bar{e} \rightarrow Zn^{2+},$$

б), в)
$$A(-) Fe - 2\bar{e} \rightarrow Fe^{2+}.$$

Разность потенциалов больше при контакте железа с медью, поэтому коррозия железа в этом случае протекает быстрее.

Катодные процессы – это реакции восстановления частиц среды.

В кислой среде (рН<7)

$$K(+)$$
 $2H^+ + 2\bar{e} \leftrightarrow H_2$.

В нейтральной среде (рН=7)

K(+)
$$2H_2O + O_2 + 4\bar{e} \leftrightarrow 4OH^-$$
.

Продукты коррозии: соль более активного металла в кислой среде или гидроксид более активного металла - в нейтральной среде.

Контактная коррозия протекает при нарушении защитного металлического покрытия. Защитные металлические покрытия можно разделить на два вида: анодные и катодные.

Анодные покрытия, при которых верхний слой металла является анодом по отношению к защищаемому металлу. Например, оцинкованное или хромированное железо.

Катодом по отношению к защищаемому металлу. Например, кадмированное, никелированное, освинцованное, медненное железо.

Рассмотрим коррозионные процессы, протекающие при нарушении защитного никелевого покрытия на стали (основной компонент - железо). Покрытие катодное, так как никель имеет более положительный стандартный потенциал, чем железо. Корродирует (окисляется) более активный металл - железо. Коррозионные процессы:

в кислой среде в нейтральной среде
$$A(-)$$
 $Fe-2\bar{e}\to Fe^{2+}$ $A(-)$ $Fe-2\bar{e}\to Fe^{2+}$ $A(-)$ $Fe-2\bar{e}\to Fe^{2+}$ $A(-)$ $Fe-2\bar{e}\to Fe^{2+}$ $A(-)$ $Ee-2\bar{e}\to Fe^{2+}$ $Ee-2\bar{e}\to Fe^$

Fe + 2HCl
$$\rightarrow$$
 FeCl₂ + H₂.

следующим образом

Методом электрозащиты металлов от коррозии является использования протекторов. *Протектор* - это более активный металл (анод), который присоединяют к защищаемому металлу. Протектор растворяется, а защищаемый металл становится катодным полюсом. После полного растворения протектора его заменяют. В качестве протектора используют Mg, Zn и их сплавы

Вопросы: 1. Что называется коррозией?

- 2. Какие классификации коррозионных процессов вы знаете?
- 3. Какое покрытие является анодным?
- 4. Какое покрытие является катодным?
- 5. Для чего используется протектор?

Задание. Опишите известные Вам виды коррозии металлов, используя классификации (по виду поражения и механизму протекания), имеющиеся в тексте.

Примеры решения задач

1. В контакте находятся металлы Cr и Fe; Cd и Fe; Ni и Fe. В какой контактной паре корродирует железо? Когда коррозия протекает быстрее и почему? Какой это тип коррозии?

Ответ: Согласно ряду напряжений металлов распределение полюсов в контактных парах следующее:

$$A(\text{--}) \; Cr \; | \; Fe \; \; K(\text{+-}); \quad K(\text{+-}) \; Cd \; | \; Fe \; A(\text{--}); \quad A(\text{--}) \; Fe \; | \; Ni \; K(\text{+-}).$$

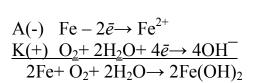
Коррозия железа протекает при его контакте с Ni или Cd, когда Fe - анод. В первом случае Cr | Fe корродирует Cr.

Коррозия протекает быстрее, когда больше ЭДС контактной пары. ЭДС рассчитывается по разности стандартных потенциалов металлов:

ЭДС_{Cr | Fe}=
$$E^0_K - E^0_A = E^0_{Fe} - E^0_{Cr} = -0,44 - (-0,744) = 0,304 B;$$

ЭДС_{Fe | Cd}= $E^0_{Cd} - E^0_{Fe} = -0,4 - (-0,44) = 0,04 B;$
ЭДС_{Fe | Ni}= $E^0_{Ni} - E^0_{Fe} = -0,25 - (-0,44) = 0,19 B.$

Коррозия протекает быстрее в контактной паре Cr | Fe.


Рассматриваемый тип коррозии относится к контактной коррозии.

2. Железное изделие покрыто никелем. Какое это покрытие анодное или катодное? Напишите реакции коррозии данной пары при нарушении защитного слоя в нейтральной среде и в среде кислоты HNO₃.

Ответ: Согласно ряду напряжений металлов в данной паре Fe - анод, а Ni – катод. Покрытие катодное. При нарушении защитного Ni – покрытия будет окисляться железо. Коррозионные процессы:

A(-) Fe –
$$2\bar{e} \rightarrow$$
 Fe²⁺
K(+) 2H⁺ + $2\bar{e} \rightarrow$ H₂
Fe+ 2H⁺ \rightarrow Fe²⁺ + H₂
в молекулярном виде
Fe+ 2HNO₃ \rightarrow Fe(NO₃)₂+ H₂.

Тема № 9 «ЭЛЕКТРОЛИЗ СОЛЕЙ»

- 1. Прочитайте слова и словосочетания, которые встретятся Вам в тексте: электролиз, электродные реакции, первый закон Фарадея, второй закон Фарадея.
 - 2. Прочитайте текст и ответьте на вопросы.

Электролиз — это сумма процессов, которые протекают при прохождении постоянного электрического тока через раствор или расплав электролита.

К отрицательному электроду (катоду) перемещаются положительные ионы, а к положительному электроду (аноду) — отрицательные ионы. На аноде протекает реакция окисления, а на катоде — восстановления.

Анод может быть растворимым и нерастворимым. Растворимый анод изготавливается из металла. Нерастворимый (инертный) анод может быть угольным, графитовым или платиновым.

Электродные реакци

Катодные процессы. Вид процесса восстановления зависит от потенциала металла. Если $E^0_{\,\,\mathrm{Me}} < E^0_{\,\,\mathrm{Al}}$, то происходит восстановление ионов H^+ воды. В нейтральной и щелочной средах на катоде протекает реакция

$$2H_2O + 2\bar{e} \rightarrow H_2 + 2OH^-$$
,

в кислой среде

$$2H^+ + 2e^- \rightarrow H_2$$
.

Если $E^0_{\mathrm{Me}} > E^0_{\mathrm{Al}}$, то восстанавливаются ионы металла соли.

Анодные процессы. На инертном аноде характер реакций окисления зависит от вида аниона. Если анион не содержит кислород, то он окисляется. Например, анионы Cl^- , Br^- , I^- , S^{2-} , за исключением F^- .

Если анион содержит кислород (NO_3^- , CO_3^{2-} , SO_4^{2-} , PO_4^{3-}) то окисляются ионы OH^- из воды по уравнению

$$2\text{H}_2\text{O} - 4\overline{e} \rightarrow \text{O}_2 + 4\text{H}^+$$
.

В случае растворимого анода происходит растворение металла, которого изготовлен электрод.

Законы Фарадея

Первый закон Фарадея: масса вещества, которое образуется при электролизе, пропорциональна количеству электричества и химическому эквиваленту вещества

$$m = \frac{A \cdot I \cdot t}{n \cdot F} = \frac{9 \cdot I \cdot t}{96500}$$

где m — масса вещества, г;

I – сила тока, A;

t – время, с;

 Θ – химический эквивалент вещества (A/n);

96500 Кл = F – число Фарадея.

Если выход по току (ВТ) менее 100 %, то формула дополняется

$$m = \frac{9 \cdot I \cdot t \cdot 3}{96500},$$

где з - ВТ, в долях от единицы.

Второй закон Фарадея: массы веществ, которые образовались на электродах, прямо пропорциональны их химическим эквивалентам.

$$\frac{m_1}{m_2} = \frac{\Im_1}{\Im_2}.$$

Вопросы: 1. Что называется электролизом?

- 2. Какие процессы происходят при электродных реакциях?
- 3. Сформулируйте законы Фарадея.

Задание. Напишите логический план текста. Проверьте себя.

План

- 1. Электролиз.
- 2. Электродные реакции.
- 3. Законы Фарадея.

Перескажите текст по плану.

Примеры решения задач

1. Какие продукты образуются при электролизе водного раствора сульфата железа (II)? Напишите уравнения реакций, протекающих на графитовых электродах.

Peшeнue: При диссоциации соли $FeSO_4$ образуются ионы Fe^{2+} и SO_4 Ионы Fe^{2+} притягиваются к катоду и восстанавливаются на нем по реакции

$$K(-) \operatorname{Fe}^{2+} + 2\overline{e} \rightarrow \operatorname{Fe}^{0},$$

так как $E^{0}_{Fe}(-0.44) > E^{0}_{Al}(-1.66B)$.

На аноде окисляется кислород воды, так как ион SO_4^{2-} содержит кислород и его окисление затруднено

$$2H_2O - 4\bar{e} \rightarrow O_2 + 4H^+$$
.

Ионы SO_4^{2-} в кислой среде анодного пространства образуют серную кислоту.

2. Какие продукты образуются при электролизе водного раствора йодида натрия? Напишите уравнения реакций для графитовых электродов.

Решение: Диссоциация соли NaI дает ионы Na⁺ и I⁻. Катодной реакцией будет восстановление ионов водорода воды. Ионы Na⁺ не могут восстанавливаться, потому что E^0_{Na} (-2,71B) < E^0_{Al} (-1,66B).

$$K(-)$$
 $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$.

В катодном пространстве образуется щелочь NaOH.

На аноде окисляются ионы Г (не содержат кислород) по реакции

$$A(+)$$
 $2I^- - 2e^- \rightarrow I_2$.

3. Напишите уравнения реакций электролиза водного раствора и расплава бромида калия.

Решение: Отличие в реакциях электролиза водного раствора и расплава соли KBr заключается в катодной реакции. В водном растворе на катоде восстанавливаются ионы водорода воды ($E^0_{\rm K} < E^0_{\rm Al}$). При электролизе расплава KBr конкурирующие реакции со стороны воды отсутствуют. На катоде восстанавливаются ионы калия. Анодный процесс не изменяется. На аноде окисляются ионы брома.

Водный раствор Расплав
$$K(-)2H_2O + 2e \rightarrow H_2 + 2OH^ K(-) 2Br^- - 2e \rightarrow Br_2$$
 $A(+) 2Br^- - 2e \rightarrow Br_2$ $A(+) 2Br^- - 2e \rightarrow Br_2$

4. Сколько граммов меди выделится на катоде при электролизе раствора $CuSO_4$ за один час при силе тока 2 A?

Решение: Согласно первому закону Фарадея масса вещества, которое образовалось на электроде, равна

$$m = \frac{9 \cdot I \cdot t \cdot 3}{96500} = \frac{A \cdot I \cdot t \cdot 3}{n \cdot 96500},$$

где для меди A=64 г/моль; n=2.

Отсюда

$$m = \frac{64 \cdot 2 \cdot 3600 \cdot 1}{2 \cdot 96500} = 2,37\Gamma$$

Значение выхода по току равно 100 %, то есть 3 = 1.

5. Электролиз раствора CuSO₄ происходил в течение 15 мин при силе тока 2,5 А. Образовалось 0,72 г меди. Вычислите выход по току.

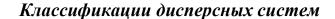
Решение: Определим массу меди, выделяющейся на катоде при 100 %-ом выходе по току. Согласно первому закону Фарадея

$$m = \frac{9 \cdot I \cdot t \cdot 3}{96500} = \frac{2,5 \cdot 15 \cdot 60 \cdot 64 \cdot 1}{2 \cdot 96500} = 0,746 \text{ r.}$$

Тогда выход по току (ВТ) будет составлять

BT =
$$\frac{m_{\text{эксп}} \cdot 100\%}{m_{\text{теор.}}} = \frac{0.72 \cdot 100}{0.746} = 96.5 \%$$
.

Тема № 10 «ДИСПЕРСНЫЕ СИСТЕМЫ»


- 1. Прочитайте специальные термины, с которыми вам предстоит встретиться в тексте: дисперсный, дисперсионный, свободнодисперсный, полидисперсный, монодисперсный, электрофорез, микрогетерогенный, суспензия, паста, эмульсия, гидрофильная поверхность, гидрофобная поверхность.
- 2. Проанализируйте состав нижеприведенных сложных слов. От каких слов они образованы: свободнодисперсный, полидисперсный, монодисперсный, высокодисперсный, низкодисперсный.
 - 3. Прочитайте текст и ответьте на вопросы.

Дисперсная система - это система, в которой одна составная часть распределена в мелкораздробленном состоянии в другой части.

Дисперсная фаза — это составная часть, распределенная в виде отдельных твердых частиц, капелек жидкости или пузырьков газа.

Дисперсионная среда – это среда, в которой распределена дисперсная фаза.

а) по величине частиц дисперсной фазы или по степени дисперсности. *Степень дисперсности* - это величина обратная среднему диаметру частиц дисперсной фазы:

$$D=\frac{1}{2r}$$
.

Таблица 2 - **Классификация дисперсных систем по степени дисперсности**

Система	Диаметр частиц, см	Число атомов в одной
		частице
Взвеси	> 10 ⁻⁵	>109
(суспензии, эмульсии)	> 10	> 10
Коллоидные растворы (золи)	$10^{-7} - 10^{-5}$	$10^3 - 10^9$
Истинные растворы	$10^{-8} - 10^{-7}$	< 10 ³

Свободнодисперсная система, в которой частицы дисперсной фазы не связаны друг с другом.

Если частицы дисперсной фазы имеют разные размеры, то образуются *полидисперсные системы*.

Монодисперсные системы, в которых частицы дисперсной фазы имеют одинаковые размеры. Монодисперсные системы делятся на высокодисперсные и низкодисперсные. Частицы высокодисперсных систем мелкие, а низкодисперсных систем – крупные.

б) по агрегатному состоянию дисперсной фазы и дисперсионной среды. Классификация представлена в таблице 3.

Основной интерес представляют коллоидные растворы (золи). Их составляющими единицами являются *мицеллы*. При образовании золя AgI по реакции двойного обмена

$$AgNO_3 + KI_{(и36ыток)} \rightarrow AgI \downarrow + KNO_3$$

возможны два варианта мицелл в зависимости от того, какой электролит взят в избытке. Рассмотрим случай, когда в избытке взят КІ. Молекулы малорастворимого вещества AgI соединяются вместе и образуют агрегаты молекул m[AgI]. На поверхности агрегатов возможна адсорбция ионов из раствора. Из окружающего раствора адсорбируются ионы, которые входят в состав малорастворимого вещества. Это будут ионы I, потому что их избыток. Образуется ядро m[AgI]nI. Ионы I называются потенциалопределяющими. Отрицательно заряженное ядро притягивает противоионы (K^+) из раствора. Образуется коллоидная частица или

Таблица 3 - **Классификация дисперсных систем по агрегатной** состоянию дисперсной фазы и дисперсионной среды*

Вид золя	Система	Примеры
Аэрозоли	Γ_1 - Γ_2	не существует дисперсных систем
	Γ_1 - \mathcal{W}_2	туман
	$\Gamma_1 - T_2$	пыль (низкодисперсная система),
		дым (высокодисперсная система)
Лиозоли	$\mathcal{K}_1 - \Gamma_2$	жидкая пена
	Ж ₁ - Ж ₂	эмульсия (низкодисперсная система),
Лиозоли	$\mathcal{K}_1 - T_2$	суспензия (низкодисперсная система),
		золь (высокодисперсная система)
Литозоли	$T_1 - \Gamma_2$	твердая пена (пемза, шлак, туф, пенопласт,
		хлеб)
	Т ₁ - Ж ₂	натуральный жемчуг (СаСО ₃ + H ₂ O)
	$T_1 - T_2$	бетон, эмали, металлокерамика, сплавы,
		цветные стекла

 $^{*)}$ Индексы: 1 - дисперсионная среда; 2 — дисперсная фаза. Агрегатные состояния: Γ — газообразное; Ж — жидкое; Т — твердое.

гранула $\{m[AgI]nI^{-}(n-x)K^{+}\}^{x-}$. Она имеет заряд, в данном случае отрицательный. Полная компенсация зарядов ионов I^{-} ионами K^{+} не происходит. Появление зарядов мешает объединению частиц в более крупные частицы.

Полностью мицелла имеет следующую формулу

Строение мицеллы приведено на рис. 2.

Если в избытке электролит AgNO₃, то мицелла AgI имеет формулу

$${m[AgI] nAg^{+} (n-x)NO_{3}^{-}}^{x+} \times NO_{3}^{-}$$
.

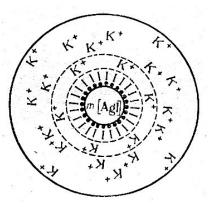


Рисунок 2 - Строение мицеллы золя иодида серебра в растворе иодида калия

Рассмотрим случай, когда потенциалопределяющий ион многозарядный. Например, при образовании мицеллы Fe(OH)₃ по

$$FeCl_{3 \text{ (избыток)}} + 3NaOH \rightarrow Fe(OH)_3 \downarrow + 3NaCl$$

ее формула следующая

$${m \text{ [Fe(OH)_3] } n\text{Fe}^{3+} \cdot 3(n-x)\text{Cl}}^{3x+} \cdot 3x \text{ Cl}}.$$

Так как коллоидные частицы имеют заряд, они могут двигаться в электрическом поле. Это явление называется электрофорез. Коллоидная частица движется к противоположно заряженному электроду (рис. 3).

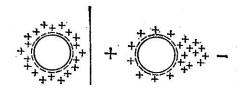


Рисунок 3 - Движение коллоидной частицы в электрическом поле

Методы получения дисперсных систем

Для получения и длительного существования золей необходимы условия:

- 1) наличие двух взаимно нерастворимых компонентов: дисперсной фазы и дисперсионной среды;
 - 2) размер частиц дисперсной фазы $10^{-7} 10^{-5}$ см;
 - 3) невысокая концентрация дисперсной фазы;
 - 4) наличие стабилизатора.

Методы получения коллоидных систем делятся на две группы:

- 1) методы диспергирования, основанные на измельчении крупных частиц;
- 2) методы конденсации (агрегации), когда атомы, ионы или молекулы соединяются в более крупные частицы.

На рис. 4 представлена схема получения коллоидных растворов по методу диспергирования и конденсации.

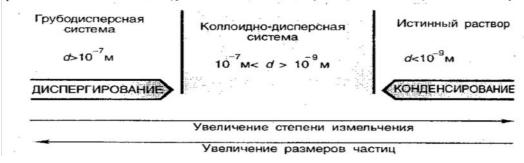


Рисунок 4 - Два метода получения дисперсных систем

Микрогетерогенные системы — это дисперсные системы, частицы дисперсной фазы которых имеют размер не менее 1 мкм. К микрогетерогенным системам относятся порошки, суспензии, эмульсии, пены.

Суспензии - это микрогетерогенные системы, в которых частицы твердого вещества взвешены в жидкой дисперсионной среде. Это низкодисперсные неустойчивые системы.

Суспензии получают путем механического диспергирования нерастворимых твердых веществ в жидкой среде. Для получения устойчивой суспензии необходимы условия: 1) большая степень дисперсности; 2) связь частиц с жидкостью, то есть смачиваемость поверхности вещества дисперсной фазы; 3) наличие стабилизатора — поверхностно-активного вещества (ПАВ). Пример стабилизации приведен на рис. 5.

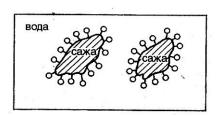
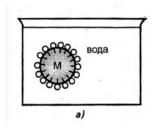



Рисунок 5 - Стабилизация суспензии сажи ПАВ

Пасты - это – высококонцентрированные суспензии.

Эмульсии — это микрогетерогенные системы, состоящие из двух взаимно нерастворимых жидкостей. Эмульсии делятся на эмульсии прямые «масло в воде» (М/В) и обратные «вода в масле» (В/М). Их стабилизация с помощью эмульгатора (ПАВ) показана на рис. 6.

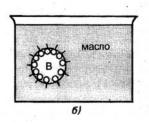


Рисунок 6 - Стабилизация эмульсий: а- прямая эмульсия М/В; б- обратная эмульсия В/М

Методы разрушения эмульсий:

- 1. Химическое разрушение слоев эмульгатора действием сильной неорганической кислоты.
 - 2. Термическое разрушение нагреванием.
- 3. Механическое разрушение. Центрифугирование относится к механическому воздействию.
- 4. Действие электролитов вызывает разрушение эмульсий, частицы которых стабилизированы электрическим зарядом.

Пены - это дисперсные системы, в жидкой или твердой дисперсионной среде которых распределены мельчайшие пузырьки газа. Пены с жидкой дисперсной средой неустойчивы, а пены с твердыми перегородками могут существовать неограниченно долго.

Основные характеристики пены: дисперсность; кинетическая устойчивость; кратность. *Кинетическая устойчивость* равна времени разрушения столба пены на половину длины. *Кратность пены* равна отношению объема пены к объему жидкости:

$$\beta = (V_{\Gamma} + V_{\mathcal{W}}) / V_{\mathcal{W}}.$$

Для «влажных» пен с толстыми перегородками β <10; для «сухих» пен с тонкими перегородками β около1000.

Пены стабилизируются поверхностно-активными веществами (ПАВ) (рис. 7).

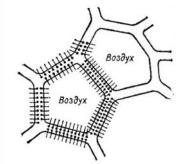


Рисунок 7 - Стабилизация пены молекулами ПАВ

Поверхностные явления

Смачивание — это процесс взаимодействия жидкостей с твердыми телами. Различают два типа смачивания:

1) *иммерсионное смачивание*, когда твердое тело погружено в жидкость. В смачивании участвуют две фазы: жидкость и твердое тело;

2) *контактное смачивание*, протекает с участием трех фаз: твердожидкой, газообразной. Например, капля жидкости на твердой поверхности.

Количественная характеристика процесса смачивания - угол, образованный каплей и твердой поверхностью. Этот угол называется **краевой угол смачивания** и обозначается θ . Значения θ могут меняться в пределах от 0 до 180° (рис. 8).

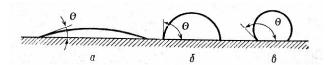


Рисунок 8 - Различные случаи неполного смачивания: a- θ <90°; б- θ =90°; в- θ > 90°.

Если жидкость образует на твердой поверхности мономолекулярный слой, то протекает полное смачивание. На практике почти не наблюдается. Если угол $0^{\circ} < \theta < 180^{\circ}$, то наблюдается неполное смачивание. Если $0 < \theta < 90^{\circ}$, то твердые поверхности, смачиваются водой и называются гидрофильными. Для гидрофобной поверхности $90^{\circ} < \theta < 180^{\circ}$. Такая поверхность плохо смачивается водой.

Вещества с гидрофильной поверхностью: силикаты (стекло), гипс, оксиды и гидроксиды металлов. Чем больше твердость минерала, тем больше его смачивание. Так, алмаз, кварц, корунд обладают очень высокой гидрофильностью. **Вещества с гидрофобной поверхностью**: углеводороды, сульфиды тяжелых металлов, графит, тальк, сера.

Инверсия смачивания - процесс качественного ее изменения за счет сорбции ПАВ на твердой поверхности. При добавлении ПАВ можно осуществить смачивание водой гидрофобных поверхностей или придавать гидрофобные свойства первоначально гидрофильной поверхности и делать ее плохо смачивающейся водой. Механизм инверсии смачивания связан с определенной ориентацией молекул ПАВ на поверхности твердого тела.

Вопросы: 1. Какая система называется дисперсной?

- 2. Что такое дисперсная фаза?
- 3. Какая среда является дисперсионной?
- 4. Дисперсные системы классифицируются: по...
- 5. Опишите эти классификации.
- 6. Какие методы получения дисперсных систем Вы знаете?
- 7. Какие существуют методы разрушения эмульсий?
- 8. Какие поверхностные явления Вы знаете?

Задание. Разбейте прочитанный текст на смысловые отрезки. Продумайте план-конспект (тезисный план) текста, запишите его в тетрадь.

На основании вопросов к тексту, таблиц к нему и плана-конспекта составьте информативный реферат на тему: «Дисперсные системы».

STOP Transconners of the College of

Примеры решения задач

1. К водному раствору хлорида натрия медленно добавляют водный раствор нитрата серебра. Образуется коллоидный раствор хлорида серебра, имеющий мицеллу с формулой

$${m \text{ [AgCl] } nCl^{-}(n-x) \text{ Na}^{+}}^{x-} \times \text{Na}^{+}$$

Вопросы:

- Какие ионы адсорбируются на агрегате?

Ответ: Агрегатом является малорастворимое вещество AgCl, на котором адсорбируются ионы Cl⁻, их избыток.

- Какой заряд ядра?

Ответ: Заряд отрицательный, он равен n-.

- Какие ионы являются противоионами?

Ответ: В состав адсорбционного слоя входят ионы Cl^- и Na^+ . Из них Cl^- - потенциалопределяющие ионы; Na^+ - противоионы.

- Укажите заряд коллоидной частицы (гранулы).

Ответ: Заряд коллоидной частицы отрицательный, он равен -n +(n-x)=-x.

- Какие ионы входят в диффузный слой?

 $\it Omsem$: В диффузный слой входят противоионы $\it Na^+$. Они находятся за границей коллоидной частицы.

- Укажите заряд мицеллы.

Ответ: Мицелла не имеет заряда, она электронейтральна. Заряд коллоидной частицы компенсируется зарядом диффузного слоя.

2. Напишите формулу мицеллы золя AgCl, образующегося по реакции

$$AgNO_{3 \, (\text{избыток})} + LiCl \rightarrow AgCl \downarrow + LiNO_3$$
 .

Ответьте на вопросы:

- Какие ионы являются потенциалопределяющими, а какие – противоионами?

Ответ: Так как в избытке электролит AgNO₃, то формула мицеллы следующая

$${m[AgCl] nAg^{+}(n-x) NO_{3}^{-}}^{x+} \cdot x NO_{3}^{-}$$

Потенциалопределяющие ионы (Ag^+) адсорбируются на агрегате. Противоионами являются NO_3^- .

- Укажите адсорбционный слой, диффузный слой и границу скольжения.

Ответ:
$$\{m[AgCl] \underbrace{nAg^{+}(n-x)NO_{3}^{-}}_{\text{адсорбционный слой}}\}^{x^{+}} \underbrace{x NO_{3}^{-}}_{\text{диффузный слой}}.$$

граница скольжения

- Какие ионы входят в диффузный слой?

Ответ: Диффузный слой включает в себя только противоионы NO₃.

- Чему равен заряд ядра и заряд гранулы?

Ответ: Заряд ядра равен n+. Заряд коллоидной частицы равен n-(n-x)=+x.

3. К водному раствору $NiCl_2$ медленно добавляют водный раствор H_2S . Укажите заряд коллоидной частицы и напишите формулу мицеллы золя.

Ответ: Избыток раствора NiCl₂. Поэтому по реакции

$$NiCl_2 + H_2S \rightarrow NiS \downarrow + 2HCl$$

образуется золь NiS, в мицеллах которого потенциалопределяющими ионами являются Ni^{2+} , а противоионами - Cl^- .

Формула мицеллы

$${m \text{ [NiS] } n\text{Ni}^{2+} \cdot 2(n-x)\text{Cl}}^{2x+} \cdot 2x \text{ Cl}^{-}}$$

Заряд коллоидной частицы +2x.

Тема № 11 «ОСНОВЫ ХИМИИ НЕОРГАНИЧЕСКИХ ВЯЖУЩИХ ВЕЩЕСТВ»

- 1. Прочитайте специальные термины, о которых Вам предстоит узнать из текста: вяжущие вещества, ангидритовое вяжущее, эстрих-гипс, воздушная известь, гидравлическая известь, гидратная гашеная известь, портландцемент, шлакопортландцемент.
- 2. Прочитайте текст, разделите его на смысловые части. Выделите в них предложения, несущие основную информацию.

Вяжущие вещества — это строительные материалы для изготовления растворов и бетонов. Вяжущие вещества делятся на 2 группы: неорганические и органические.

Главные органические вяжущие вещества – битумы и смолы. Их признаки:

- 1. гидрофобность;
- 2. переход в пластично вязкую массу при нагревании или смешивании с органическими растворителями.

Неорганические вяжущие вещества - это порошкообразные материалы, образующие при смешивании с водой пластично—вязкую массу, которая во времени превращается в прочное камневидное тело. Для неорганических вяжущих веществ характерны следующие признаки:

- 1. гидрофильность;
- 2. способность образовывать с водой пластично-вязкую массу;
- 3. способность переходить в твердое состояние.

Вяжущие вещества применяются в смеси с мелким заполнителем (песком) и называются растворами. Смесь с мелким и крупным заполнителем (щебнем, гравием) – бетон.

По условиям твердения и устойчивости к воде продуктов неорганические вяжущие вещества делятся на воздушные и гидравлические. Воздушные вяжущие вещества: воздушная известь, гипсы. Воздушные вяжущие вещества после смешивания с водой твердеют на воздухе. Продукты их твердения неустойчивы в воде.

Гидравлические вяжущие вещества: портландцемент, глиноземистые цементы, гидравлическая известь. Гидравлические вяжущие вещества после первоначального схватывания на воздухе в дальнейшем могут твердеть и под водой. Продукты твердения сохраняют прочность в воде.

Основные воздушные вяжущие вещества – гипсовые вяжущие и строительная известь.

Гипсовые вяжущие вещества получают тепловой обработкой (обжиг) двуводного гипса $CaSO_4 \cdot 2H_2O$ и помолом продукта. Они состоят из полуводного гипса $CaSO_4 \cdot 0,5H_2O$ и ангидрита $CaSO_4$.

В зависимости от температуры обработки гипсовые вяжущие делятся на:

- 1. низкообожженные гипсовые. Температура обжига 110 180 °C. Главный компонент CaSO₄·0,5H₂O (алебастр);
- 2. высокообожженные (ангидритовые). Температура обжига 600 900 °C. Главный компонент CaSO₄ (ангидрит).

Сырье для получения гипсовых вяжущих: природный гипс $CaSO_4 \cdot 2H_2O$ и природный ангидрит $CaSO_4$.

Процесс получения гипсов при дегидратации CaSO₄·2H₂O

$$CaSO_4 \cdot 2H_2O \xrightarrow{-1.5H_2O,t^{\circ}C} CaSO_4 \cdot 0,5H_2O \xrightarrow{-0.5H_2O,t^{\circ}C} CaSO_4.$$

При t = 800 - 1000 °C CaSO₄ частично разлагается на CaO, SO₂ и O₂

$$2\text{CaSO}_4 \rightarrow 2\text{CaO} + 2\text{SO}_2 + \text{O}_2 \,.$$

Малое количество CaO (2-3 %) оказывает каталитическое воздействие на твердение CaSO₄. Этот продукт называется *эстрих – гипс*.

На практике получают 3 вида гипсовых вяжущих веществ:

- 1. строительный гипс;
- 2. ангидритовое вяжущее;
- 3. эстрих-гипс.

Строительный гипс - вещество, которое получают при обжиге природного гипса $CaSO_4 \cdot 2H_2O$. Он состоит из полуводного гипса $CaSO_4 \cdot 0,5H_2O$.

$$CaSO_4 \cdot 2H_2O \xrightarrow{130-150^{\circ}C} CaSO_4 \cdot 0,5H_2O + 1,5H_2O.$$

природный

гипс

Ангидритовое вяжущее получают обжигом при температурах 600-700° С. Главный компонент — нерастворимый ангидрит $CaSO_4$, который в смеси с водой почти не твердеет. Для активизации его твердения применяют добавки сульфатов Na_2SO_4 , K_2SO_4 , $FeSO_4$.

Эстрих – **гипс** получают обжигом при 900-1100° С. Главные компоненты – нерастворимый $CaSO_4$ и CaO. Содержание CaO увеличивается с ростом температуры.

Твердение гипса обусловлено переходом полученных продуктов при взаимодействии с водой в гидраты по реакции гидратации

Строительный гипс: $CaSO_4 \cdot 0.5H_2O + 1.5H_2O \rightarrow CaSO_4 \cdot 2H_2O$;

Ангидритовое вяжущее: $CaSO_4 + 2H_2O \rightarrow CaSO_4 \cdot 2H_2O$.

Строительная известь – продукт, который получают при обжиге карбонатов Ca—Mg с удалением CO_2 . Основной компонент - CaO. Различают негашеную известь CaO и гашеную известь $Ca(OH)_2$.

Получение извести основано на реакциях

$$CaCO_3 \xrightarrow{t^{\circ}C} CaO + CO_2, t = 800 - 1000^{\circ}C;$$
 известняк
 $CaCO_3 \cdot MgCO_3 \xrightarrow{t^{\circ}C} CaO + MgO + 2CO_2.$ поломит

Состав негашеной извести: CaO, MgO, малое количество CaCO₃, силикаты, алюминаты, ферриты Ca и Mg.

Если карбонаты Са содержат примеси глины, то при обжиге изменяются гидросиликаты глин. Основной минерал глин — каолинит $Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O$ при обжиге разлагается

$$Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O \rightarrow Al_2O_3 \cdot SiO_2 + SiO_2,$$

$$Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O \rightarrow \underbrace{Al_2O_3 + SiO_2}_{\text{разрыхленные}}.$$

В печи между продуктами идут реакции в твердом состоянии

$$\begin{aligned} &\text{CaO} + \text{SiO}_2 + \text{Al}_2\text{O}_3 \xrightarrow{1200^{\circ}\text{C}} \text{CaO} \cdot \text{Al}_2\text{O}_3; 2\text{CaO} \cdot \text{SiO}_2, \\ &\text{CaO} + \text{SiO}_2 + \text{Al}_2\text{O}_3 \xrightarrow{1250 - 1300^{\circ}\text{C}} \rightarrow 5\text{CaO} \cdot \text{SiO}_2; 3\text{CaO} \cdot \text{Al}_2\text{O}_3. \end{aligned}$$

Негашеная известь может быть двух видов:

воздушная известь состоит из 90-95 % CaO и MgO и $\leq 10^{50}$ силикатов и алюминатов Ca;

гидравлическая известь содержит 70-80 % силикатов и алюминатов Ca, остальное - CaO, MgO.

Гидравлическую известь диспергируют помолом, а воздушную -при реакции с водой.

Гидратная гашеная известь – высокодисперсный порошок, который получают по реакции

$$CaO + MgO + 2H_2O \rightarrow Ca(OH)_2 + Mg(OH)_2$$
.

Твердение извести. Твердение на воздухе негашеной и гидравлической извести протекает по реакции

$$CaO + CO_2 + H_2O = CaCO_3 + H_2O$$
.

Гашеная известь твердеет по реакции

$$Ca(OH)_2 + H_2O + CO_2 \rightarrow CaCO_3 + 2H_2O.$$

При изготовлении силикатного кирпича реакция твердения заключается в образовании гидросиликата кальция

$$2\text{Ca}(\text{OH})_2 + \text{SiO}_2 + (n-2)\text{H}_2\text{O} \rightarrow 2\text{CaO} \cdot \text{SiO}_2 \cdot \text{nH}_2\text{O}.$$

Подобная реакция идет очень медленно при обычной температуре, но ускоряется при обжиге.

Гидравлические вяжущие вещества: гидравлическая известь, портландцемент, глиноземистый и высокоглиноземистый цементы.

Портиландиемент — это гидравлическое вяжущее вещество, получаемое обжигом до спекания смеси известняка и глины. Получаемый клинкер измельчается с гипсом или другими специальными добавками.

Спекание – это частичное плавление компонентов.

Различают:

- портландцемент без добавок (с гипсом);
- портландцемент с минеральными добавками;
- шлакопортландцемент.

Гипс (в количестве ≈ 5 %) добавляют для замедления схватывания. Клинкер без гипса затвердевает в цементный камень с низкими механическими свойствами.

Шлакопортландцемент получают при добавлении в клинкер шлаков до 20 % от массы вяжущего вещества.

Сырьевые материалы для производства портландцементного клинкера карбонаты и алюмосиликаты

3 : 1 глины

мел, известняки

каолинит

(50 % CaCO₃) Al₂O₃·2SiO₂·2H₂O

(70 % SiO₂ и 5-20 % Al₂O₃)

Основные минералы цементного клинкера. В химии цемента приняты сокращения согласно номенклатуре Тейлора

$$CaO - C$$
 $Al_2O_3 - A$ $SiO_2 - S$ $Fe_2O_3 - F$ $H_2O - H$

Из исходных компонентов ($CaCO_3$ и Al_2O_3 · $2SiO_2\cdot 2H_2O$) образуются минералы цементного клинкера (таблица 4).

Обжиг сырьевой смеси. Сырьевая смесь обжигается во вращающихся печах. Размер печи 185 м в длину и 5 м в диаметре (рис. 9). Печь условно делится на 6 зон.

Таблица 4 - Основные минералы цементного клинкера

Название минерала	Формула	Условное обозначение	Содержание в клинкере, %
	В клиг	нкере:	
трехкальциевый силикат (алит);	3CaO⋅ SiO ₂	C ₃ S	45-60
двухкальциевый силикат (белит)	2CaO· SiO₂	C_2S	20-30
четырехкальцие- вый алюмоферрит	4 CaO· Al ₂ O ₃ ·Fe ₂ O ₃	$\mathrm{C_4AF}$	10-20
(целит) трехкальциевый алюминат	3CaO∙ Al ₂ O ₃	C ₃ A	3-12

Зона I - зона сушки: $t = 300\text{-}600^0$ С. Происходит сушка сырьевой смеси. При $t = 400\text{-}500^0$ С в материале сгорают органические примеси и начинается дегидратация каолинита.

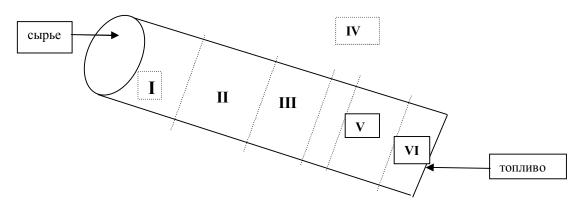


Рисунок 9 - Зоны вращающейся печи

Зона II - зона подогрева: $t = 500\text{-}800^0$ С. Происходит дегидратация каолинита с образованием каолинитового ангидрида $\text{Al}_2\text{O}_3\cdot2\text{SiO}_2$

$$Al_2O_3 \cdot 2SiO_2 \cdot 2 H_2O \xrightarrow{t^{\circ}C} Al_2O_3 \cdot 2SiO_2 + 2H_2O.$$

I и II зоны занимают до 55 % длины всей печи.

Зона III – **зона кальцинации:** $t = 850\text{-}1200^{\circ}$ С. Эта зона составляет 25-30 % длины печи. В ней происходит разложение CaCO₃,

$$CaCO_3 \xrightarrow{t^{\circ}C} CaO + CO_2 - Q$$
. известья известь

и начинаются реакции в твердом состоянии между CaO и $Al_2O_3 \cdot 2SiO_2$. При температуре $800-900^0$ C возможно образование таких продуктов, как

$$2 CaO \cdot SiO_2(C_2S); CaO \cdot SiO_2(CS); CaO \cdot Al_2O_3(CA); 2 CaO \cdot Fe_2O_3(C_2F).$$

Зона IV – **экзотермическая зона**: t =1200-1300°C. В этой зоне резко возрастает скорость образования C_2S , а также переход CA в C_5A_3 и C_3A

$$3(\text{CaO} \cdot \text{Al}_2\text{O}_3) + 2\text{CaO} \rightarrow 5\text{CaO} \cdot 3\text{Al}_2\text{O}_3,$$

 $5\text{CaO} \cdot 3\text{Al}_2\text{O}_3 + 4\text{CaO} \rightarrow 3(3\text{CaO} \cdot \text{Al}_2\text{O}_3).$

К концу IV зоны материал состоит из C_2S , C_4AF и C_2F .

Зона V - зона спекания: t=1300-1450 0 С. В жидкой фазе создаются условия для образования основного материала портландцементного клинкера – трехкальциевого силиката C_3S

$$2\text{CaO} \cdot \text{SiO}_2 + \text{CaO} \rightarrow 3\text{CaO} \cdot \text{SiO}_2,$$

 $\text{C}_2\text{S} + \text{C} \rightarrow \text{C}_3\text{S}.$

$$CaCO_3 \xrightarrow{t^{\circ}C} CaO + CO_2 - Q$$
. известья известь

Зона VI – зона охлаждения. После зоны спекания материал переходит в зону охлаждения. До температуры 1300 °C в нем еще присутствует жидкая фаза и продолжается реакция образования C_3S . Окончательно смесь охлаждается в холодильнике.

Взаимодействие цементного клинкера с водой. При взаимодействии цементного клинкера с водой его компоненты образуют нерастворимые в воде соединения. Гидратные соединения образуются в реакциях гидролиза и гидратации солей клинкера. Они образованы сильным основанием $Ca(OH)_2$ и слабыми кислотами H_2CO_3 , H_2SiO_3 .

Взаимодействие с водой алита C_3S (3CaO·SiO₂). С₃S при взаимодействии с водой дает гидросиликаты Са различного состава. Он участвует в реакциях гидратации и гидролиза

$$C_3S + nH \rightarrow C_3SH_n$$
, $3CaO \cdot SiO_2 + nH_2O \rightarrow 3CaO \cdot SiO_2 \cdot nH_2O$ (гидратация).

Основные реакции взаимодействия с водой алита - это совместные реакции гидролиза и гидратации

$$C_3S + (n+1)H \rightarrow C_2SH_n \downarrow + Ca(OH)_2,$$

 $3CaO \cdot SiO_2 + (n+1)H_2O \rightarrow 2CaO \cdot SiO_2 \cdot nH_2O + Ca(OH)_2,$
 $2C_3S + 6H \rightarrow C_3S_2H_3 + 3Ca(OH)_2,$
 $2(3CaO \cdot SiO_2) + 6H_2O \rightarrow 3CaO \cdot 2SiO_2 \cdot 3H_2O + 3Ca(OH)_2.$

Взаимодействие c водой белита C_2S (2CaO·SiO₂). C₂S участвует только в гидратации

$$C_2S + 2H \rightarrow C_2SH_2$$
,
 $C_2S + nH \rightarrow C_2SH_n$.

Взаимодействие с водой C_3A (3CaO·Al₂O₃). При большом количестве воды образуется нестабильный минерал 3CaO·Al₂O₃·10-12 H₂O

$$C_3A + (10-12)H \rightarrow C_3AH_{10-12}$$
 (нестабилен).

При добавлении воды в обычных количествах образуется гидрат $3CaO\cdot Al_2O_3\cdot 6H_2O$. Все остальные гидроалюминаты постепенно переходят в шестиводный алюминат

$$3\text{CaO} \cdot \text{Al}_2\text{O}_3 + 6\text{H}_2\text{O} \rightarrow 3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 6\text{H}_2\text{O}.$$

Гипс замедляет твердение цемента. Гипс взаимодействует гидроалюминатами и образует нерастворимый гидросульфоалюминат кальция – минерал этрингит

$$3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 6\text{H}_2\text{O} + 3\text{CaSO}_4 + 25(26)\text{H}_2\text{O} \rightarrow 3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{CaSO}_4 \cdot 31(32)\text{H}_2\text{O}.$$

Некоторое время происходит образование этрингита. Только после расходования всего гипса (1-3 часа), начинает образовываться чистый гидроалюминат кальция. Цемент твердеет.

Взаимодействие с водой целита (C_4AF). C_4AF участвует в реакции гидролиза и гидратации

$$4\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{Fe}_2\text{O}_3 + (m+6)\text{H}_2\text{O} \rightarrow$$

$$3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 6\text{H}_2\text{O}(\text{C}_3\text{AH}_6) + \text{CaO} \cdot \text{Fe}_2\text{O}_3 \cdot m\text{H}_2\text{O}(\text{CFH}_m).$$

Образуются шестиводный трехкальциевый алюминат и гидроферрит кальция. Далее гидроферрит Са образует более основной гидроферрит $3(4)\text{CaO·Fe}_2\text{O}_3\cdot n\text{H}_2\text{O}(\text{C}_{3(4)}\text{FH}_n)$

$$CFH + 3Ca(OH)_2 + 10H \rightarrow C_4FH_{14}$$
.

Гидроферриты кальция также уменьшают скорость твердения цемента в результате образования соединения с гипсом — гидросульфоферрита $3\text{CaO}\cdot\text{Fe}_2\text{O}_3\cdot3\text{CaSO}_4\cdot(30-32)\text{H}_2\text{O}$.

Глиноземистый и высокоглиноземистый цементы - это быстротвердеющие гидравлические вяжущие вещества, которые состоят из низкоосновных алюминатов кальция.

Глиноземистый цемент содержит минералы $CaO\cdot Al_2O_3$ (CA), $CaO\cdot Fe_2O_3(CF)$, $CaO\cdot 2Al_2O_3$ (CA₂), $5CaO\cdot 3Al_2O_3$ (C₅A₃). Минерал $2CaO\cdot Al_2O_3$ SiO_2 (C₂AS) — геленит является нежелательной добавкой, так как не может взаимодействовать с водой.

Основные минералы высокоглиноземистого цемента С₂А и СА.

Оба цемента огнеупорные, плотные и стойкие к коррозии.

Твердение основного минерала алюминатных цементов СА идет по реакции

$$2(CA)+11H \rightarrow C_2AH_8+2Al(OH)_3$$
 (гель). восьмиводный двухкальциевый гидроалюминат

Коррозия бетона. Коррозия бетона начинается с цементного камня. Выделены *три основных вида коррозии*:

- 1. Разложение цементного камня водой и растворение извести Са(ОН)₂;
- 2. Образование легко растворимых солей и их вымывание;

3. Образование соединений с большим объемом, чем исходны вещества, что приводит к образованию трещин.

Разложение цементного камня водой может протекать с разной скоростью. Если вода мягкая, то значительные количества $Ca(OH)_2$ удаляются из бетона. Он становится пористым и теряет прочность.

Вещества, которые повышают растворимость $Ca(OH)_2$, ускоряют коррозию бетона. Например, NaCl, $CaCl_2$.

Процессы удаления извести $Ca(OH)_2$ замедляются, когда на поверхности бетона под действием CO_2 воздуха образуется малорастворимый $CaCO_3$ (карбонизация)

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 \downarrow + H_2O.$$

Поэтому бетонные блоки, предназначенные для подводных или гидротехнических сооружений, выдерживают несколько месяцев на воздухе для карбонизации извести в поверхностном слое.

Углекислотная и магнезиальная коррозия бетона. Коррозия второго вида делится на углекислотную и магнезиальную.

Углекислотная коррозия заключается в растворении карбоната кальция CaCO₃ под действием углекислого газа CO₂, растворенного в воде

$$CaCO_3 + 2H^+ + CO_3^{2-} \rightarrow Ca(HCO_3)_2$$
.

Гидрокарбонат кальция $Ca(HCO_3)_2$ – растворимый продукт, он легко вымывается из цемента.

Магнезиальная коррозия протекает под действием растворов солей $MgCl_2$ и $MgSO_4$ морских и грунтовых вод

$$MgSO_4 + Ca(OH)_2 \rightarrow CaSO_4 + Mg(OH)_2 \downarrow$$
,
 $MgCl_2 + Ca(OH)_2 \rightarrow CaCl_2 + Mg(OH)_2 \downarrow$.

Соли кальция $CaSO_4$ и $CaCl_2$ влияют на цементный камень. $CaSO_4$ вызывает сульфатную коррозию. $CaCl_2$ ускоряет коррозию первого вида, так как повышает растворимость $Ca(OH)_2$.

Сульфатная коррозия бетона. Сульфаты встречаются в природных водах. Такие воды в бетоне вызывают реакцию образования минерала этрингита

$$3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 6\text{H}_2\text{O} + 3\text{CaSO}_4 + 25(26)\text{H}_2\text{O} \rightarrow 3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{CaSO}_4 \cdot 31(32)\text{H}_2\text{O}.$$

Продукт реакции образуется с большим увеличением объема, так как он кристаллизуется с 31-32 молекулами воды. Рост и накопление таких кристаллов в теле бетона вызывает его разрушение.

Методы защиты бетона от коррозии можно разделить на следующие группы:

- 1. выбор цемента;
- 2. изготовление особо плотного цемента;

3. применение защитных покрытий.

Выбор цемента. Сульфатная коррозия отсутствует при использовании портландцемента с пониженным содержанием трехкальциевого алюмината (не более 5 %), который может реагировать с CaSO₄. Для предотвращения сульфатной и магнезиальной коррозии бетона применяют глиноземистый и высокоглиноземистый цементы.

Если бетон эксплуатируется в мягкой воде (І тип коррозии бетона), то выбирают цемент с 30-50 % активной минеральной добавки — пуццолановый портландцемент. Активные минеральные добавки — трепел и диатомит - это аморфный кремнезем SiO_2 . Протекает реакция образования нерастворимых силикатов кальция

$$Ca(OH)_2 + SiO_2 \rightarrow CaO \cdot SiO_2$$
.

С этой целью можно применять и шлакопортландцемент, который содержит доменные шлаки. Шлаки реагируют с известью и образуют нерастворимые соединения.

Изготовление особо плотного цемента возможно, если применять пластификаторы — ПАВ. Бетон должен быть плотным, чтобы не было диффузии агрессивных жидкостей в его тело.

Применение защитных покрытий. В очень агрессивных средах бетон покрывают защитными покрытиями.

Задание. Составьте логический план текста. Запись производите в правой стороне тетради, оставляя промежутки между пунктами плана. Найдите в тексте для каждого пункта плана ряд ключевых фрагментов, конкретизирующих данный пункт (наиболее информативные элементы текста: слова, словосочетания, предложения). Выпишите их. По полученной записи составьте устный реферат.

- 1. Воюцкий С.С. Курс коллоидной химии.- М.: Химия, 1976.- 512 с.
- 2. Глинка Н.Л. Общая химия. Л.: Химия, 1983. 704 с.
- 3. Евстратова К.И., Купина Н.А., Малахова Е.Е. Физическая и коллоидная химия.- М.: Высш. шк., 1990.- 487 с.
- 4. Фридрихсберг Д.А. Курс коллоидной химии.- Л.: Химия, 1984.- 368 с.
 - 5. Фролов Ю.Г. Курс коллоидной химии.- М.: Химия, 1982.- 395 с.
- 6. Красовский И.В., Вайль Е.И., Безуглый В.Д. Физическая и коллоидная химия.- К.: Вища школа, 1983.- 345 с.
- 7. Хоботова Э.Б., Маракина Л.Д. Конспект лекций по дисциплине «Химия». Раздел «Поверхностные явления. Дисперсные системы».- Харьков: XHAДУ, 2004.- 58 с.

Растворимость солей и оснований в воде (Р - растворимое; М - малорастворимое; Н - практически нерастворимое вещество; прочерк означает, что вещество не существует или разлагается водой)

										Катион	ы		•		,			. Jan	
Анионы	Li*	Na ⁺ , K ⁺	NH ₄	-Cu ²⁺	Ag ⁺	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺	Zn ²⁺	Hg ²⁺	Al ³⁺	Sn ²⁺	Pb ²⁺	Bi ³⁺	Cr ³⁺	Mn ²⁺	Fe ³⁺	Fe ²⁺
CI ⁺	Р	P	Р	P	Н	Р	Р	P	P	Р	P	. P	Р	M	_	P	P	P	P
Br ⁻	P	ŕ.	P	P	н	P	P	р.	P	P	M	P	P	M	-	P	P	P	Р
ı-	P	P	Р	_	Н	P	P	P	P	P	H	P	P	. н	-	P	P	-	P
NO3	P	P	P	P	P	P	P	P	P	P	P	P	-	P.	P	P		P	P
CH3COO	P	P	P	P	P	P	P	P	P	P	P.	P	_	P	<u> </u>	-	P	-	P
s²	Ρ	P	P	н	Н	_	P	P	P	Н	Н	-	Ĥ	н	Н	-	Н	Н	Н
SO ₃ ²⁻	Ρ.	P	P	н	Н	· H	` н	н	н	н	H	-	. —	н	н	-	Н	_	H
so4-	P	P	P	P	M	P	М	н	H.	P		P	P	Н		P	P	P	P
CO3-	P	P	P	.—	н	.н	H	н	н	H			_	н	H		н	_	н
SiO3-	P	P	-		_	н	H	Н	Н	Н		н	_	, H		_	н	Н	Н
CrO4-	Р	P	Р	н	н	P	M	M	Н	н	н	-	-	Н	н	P	н	-	-
PO4	н	P	P	Ĥ	Н	Н	H	H	` H	H	H	Н	н	Н	Н	н	Н	н	Н
он" .	Р	P	P	н		н	M	M	Р	H.		. н	Н	н	Н	н	н	Н	Н

Tаблица 2 Константы и степени диссоциации слабых электролитов

Электролиты	Формула	Числовые значения констант диссоци- ации	Степень диссо- циации в 0,1 н. растворе, %
Азотиствя кислота	HNO ₂	$K = 4.0 \cdot 10^{-4}$	6,4
Аммиак (гидроксид)	NH ₄ OH	$K = 1.8 \cdot 10^{-5}$	1,3
Муравьиная кислота	HCOOH	$K = 1.76 \cdot 10^{-4}$	4,2
Ортоборная кислота	H ₃ BO ₃	$K_1 = 5.8 \cdot 10^{-10}$ $K_2 = 1.8 \cdot 10^{-13}$	0,007
Ортофосфорная кислота	H ₃ PO ₄	$K_3 = 1.6 \cdot 10^{-1.4}$ $K_1 = 7.7 \cdot 10^{-3}$ $K_2 = 6.2 \cdot 10^{-8}$	27
Сернистая кислота	H ₂ SO ₃	$K_3 = 2.2 \cdot 10^{-13}$ $K_1 = 1.7 \cdot 10^{-2}$ $K_2 = 6.2 \cdot 10^{-8}$	20,0
Сероводородная кислота	H ₂ S	$K_1 = 5.7 \cdot 10^{-8}$ $K_2 = 1.2 \cdot 10^{-15}$	0,07
Синильная кислота	HCN	$K = 7.2 \cdot 10^{-10}$	0,009
Угольная кислота	H ₂ CO ₃	$K_1 = 4.3 \cdot 10^{-7}$ $K_2 = 5.6 \cdot 10^{-11}$	0,17
Уксусная кислота	СН3СООН	$K = 1.75 \cdot 10^{-5}$	1,3
Фтороводородная кислота	HF	$K = 7.2 \cdot 10^{-4}$	8,5
Хлорноватистая кислота	HCIO	$K = 3.0 \cdot 10^{-8}$	0,05

Таблица Стандартные электродные потенциалы (E^0) некоторых металлов (ряд напряжений)

Электрод	Электродная реакция	E°, B
Li/Li ⁺	$Li = Li^+ + e^-$	-3,02
Ca/Ca ²⁺	$Ca = Ca^{2+} + 2e^{-}$	-2,84
Mg/Mg^{2+}	$Mg = Mg^{2+} + 2e^{-}$	-2,38
Al/Al ³⁺	$Al = Al^{3+} + 3e^{-}$	-1,66
Mn/Mn ²⁺	$Mn = Mn^{2+} + 2e^{-}$	-1,05
Zn/Zn^{2+}	$Zn = Zn^{2+} + 2e^{-}$	-0,76
Cr/Cr ³⁺	$Cr = Cr^{3+} + 3e^{-}$	-0,74
Fe/Fe ²⁺	$Fe = Fe^{2+} + 2e^{-}$	-0,44
Cd/Cd ²⁺	$Cd = Cd^{2+} + 2e^{-}$	-0,40
Co/Co ²⁺	$Co = Co^{2+} + 2e^{-}$	-0,277
Ni/Ni ²⁺	$Ni = Ni^{2+} + 2e^{-}$	-0,23
Sn/Sn ²⁺	$Sn = Sn^{2+} + 2e^{-}$	-0,14
Pb/Pb ²⁺	$Pb = Pb^{2+} + 2e^{-}$	-0,126
H ₂ /2H ⁺	$H_2 = 2H^+ + 2e^-$	0,0
Sb/Sb ³⁺	$Sb = Sb^{3+} + 3e^{-}$	+0,2
Bi/Bi ³⁺	$Bi = Bi^{3+} + 3e^{-}$	+0,23
Cu/Cu ²⁺	$Cu = Cu^{2+} + 2e^{-}$	+0,34
Ag/Ag ⁺	$Ag = Ag^{+} + e^{-}$	+0,8
Pd/Pd ²⁺	$Pd = Pd^{2+} + 2e^{-}$	+0,83
Hg/Hg ²⁺	$Hg = Hg^{2+} + 2e^{-}$	+0,85
Pt/Pt ²⁺	$Pt = Pt^{2+} + 2e^{-}$	+1,2
Au/Au ⁺	$Au = Au^+ + e^-$	+1,7

Таблица 4

ЕРИ-	РЯДЬ			Γ.	РУП	ПЫ
ДЫ			Н	111	IV -	V
1	1,	(H)				
2	П	Li 3 6,94 ₁ 2s ¹ литий 2	Ве 4 9,01218 2s ² 2 БЕРИЛЛИЙ 2	5 B 3 2p ¹ 10,81 5 50P	6 С 4 2p ² 12,011 2 УГЛЕРОД	7 N 5 2p ³ 14,0067 2 A3OT
3	111	Na 11 22,98977 3s ¹ 8 НАТРИЙ 2	Mq 12	13 Д ³ 3p¹ 26,98154 ² АЛЮМИНИЙ	" SI	¹⁵ P
4	IV	К 19 39,098 ₃ 4s ¹ 8 КАЛИЙ 2	Ca 20	Sc 21	7 22	V 23
•	٧,	29. Си 18 3d 194s 1 63,546 МЕДЬ	30 Zn 18 4s ² 65,38, ЦИНК	31 Ga 3 Ga 18 4p¹ 69,72 ГАЛЛИЙ	32 Ge	33, As 5 74 9216
E	VI	Rb 37 1 8 85,467 ₈ 5s' 18 РУБИДИЙ 2	Sr 38 2 8 87,62 5s ² 18 СТРОНЦИЙ 2	V 39,	7r 40,	Nh 41
5 	VII	47 Ag 18 5s ¹ 107,868 8 CEPEBPO	⁴⁸ Cd	3 ⁴⁹ In	₃⁵° Sn	51 Sb
6	VIII	Cs 55 18 132,9054 18 6s ¹ 18 6s ¹ 18 2	Ba 56 2	La* 57 2	Hf . 72 178,49 5d ² 6s ² 18	Та 73 180,947 ₉ 32 5d ³ 6s ² 18 ТАНТАЛ 2
J	ΙX	79 Au 18 32 196,9665 18 5d ¹⁰ 6s ¹ 2 ЗОЛОТО	80 Hg 200,5 ₉ 86 6s ² 9TYTЬ	81 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	82 Pb 18 32 207,2	
7	x	Fr 87 18 223] 18 32 7s' 18 ФРАНЦИЙ 2	Ra 88 2 226,0254 18 7e ² 18	Ac**89 [227] 18 6d ¹ 7s ² 32	Ku 104 2	(Ns) 105 11 32 [261] 6d ³ 7s ² 8
**	AHTA	Augustial Committee	2	2	OBMINIZ	
· _ !	50 E	Р АЗЕОДИМ 2 НОИДЫ	Id ⁶⁰ 2 Pn 4,24 ²⁸ [145] 4f ⁴ 6s ² 8 1		62 21 21 151,96 21 41 ⁷ 6s ² 11 EВРОПИЙ	Gd 64 2 157,2 ₅ 4f ⁷ 5d 16s ² 8 ГАДОЛИНИЙ
** /	АКТИ	ноиды				
h	90	ງລ ⁹¹ ະ	11 92 2 N	p ⁹³ , Pu	94 2 Am 2 2 2 4 3 2 5 f ⁷ 7 2 8 2 5 1 4 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M	95 Cm ⁹⁶

	VI E H T	ОВ	VIII	
VI	VII	 	V 111	2 40
	ts¹ 1,0079 1 ВОДОРОД			1s ² 4,00260 2 ГЕЛИЙ
8 O	9 F			¹⁰ Ne
^{2р⁴} 15,999₄ КИСЛОРОД	7 2p ⁵ 18,998403 2 ФТОР			8 2p ⁶ 20,17, 2 HEOF
3p ⁴ 32,06	17 CI 7 3p ⁵ 35,453 XЛОР			18 A 8 3p ⁶ 39,94,
CEPA 24 1,996 3d ⁵ 4s ¹ 13 1,000 2	Mn 25 54,9380 3c ⁵ 4s ² 18 MAPFAHEU	Fe 55,84, 30 ЖЕЛЕЗО	26 3 ⁶ 4s ² 14 4 58,9332 2 КОБАЛЬТ	27 Ni 28
34 Se 34 78,96 CEJEH	35 Br 18 4p ⁵ 79,904 5POM			36 8 18 4p ⁶ 83,8 2 КРИПТО
Мо 42 1 13 95,94 4d ⁵ 5s ¹ 18 МОЛИБДЕН 2	ТЕХНЕЦИЙ	Ru 101,0 ₇ 4 РУТЕНИЙ	44 1 Rh 15 102,9055 2 РОДИЙ	2 ПАЛЛАДИЙ
52 Те 5р⁴ 127,6 ₀ ТЕЛЛУР	7 53 18 5p ⁵ 126,9045 8 10 J			8 54 X 6 18 5p ⁶ 131,3 2 KCEHO
W 74 2 183,8 ₅ 5d ⁴ 6s ² 18 ЗОЛЬФРАМ 2	5d ⁵ 6s ² 1	3 100 2	76 ₂ 14 32 192,2 ₂ 18 8 2 ИРИДИЙ	77 2 Pt 78 195,09 5d ⁹ 6s ¹ платина
ВОЛЬФРАМ 2 6 84 РО 82 [209] 8 6р ⁴ 8 ПОЛОНИЙ	7 85 At 18 32 [210]	/.	2 110 114	86 Ri 18 32 [22: 18 6p ⁶ 2 РАДО
Атомная масса— Распределение— элентронов по застраивающимся и последующим застроенным подуровням	92 2 9 Pa 238,02 32 3.2 3.6 5f ³ 6d ¹ 7s ² 18 10 VPAH	омный номе спределение ентронов уровням	Международной Точность после ±3, если она вы В нвадратных с вые числа наибо	дней значащей цифры ±1 и делена мелким шрифтом снобках приведены массо лее устойчивых изотолов.
Tb 65 2 162	y ⁶⁶ ² Ho	67 4 29 167,2 6 16 18 4 12 4 12	68 ₂ Tm 69 30 168,9342 4f 136s ²	а являются общепринятым 2 Yb 70 2 2 71 11 173.04 38 174.96 ₇ 4f 46s ² 8 174.96 ₇ 5d 6s иттербий лютеции
Bk ⁹⁷ Cf	98 2 5 9	9 10	0 Md 101 3 (No) ¹⁰² / ₃₂ (Lr) ¹⁰³

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

- 1. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ
- 2. ХИМИЧЕСКАЯ КИНЕТИКА. ХИМИЧЕСКОЕ РАВНОВЕСИЕ
- 3. РАСТВОРЫ. КОНЦЕНТРАЦИИ РАСТВОРОВ
- 4. ДИССОЦИАЦИЯ ЭЛЕКТРОЛИТОВ. МОЛЕКУЛЯРНО-ИОННЫЕ РЕАКЦИИ
- 5. ВОДОРОДНЫЙ ПОКАЗАТЕЛЬ
- 6. ГИДРОЛИЗ СОЛЕЙ
- 7. ХИМИЧЕСКИЕ ИСТОЧНИКИ ТОКА
- 8. КОРРОЗИЯ МЕТАЛЛОВ
- 9. ЭЛЕКТРОЛИЗ СОЛЕЙ
- 10. ДИСПЕРСНЫЕ СИСТЕМЫ
- 11.ОСНОВЫ ХИМИИ НЕОРГАНИЧЕСКИХ ВЯЖУЩИХ ВЕЩЕСТВ

Литература

Приложение

Министерство образования и науки Украины

Харьковский национальный автомобильно-дорожный университет

К печати и в свет разрешаю первый проректор

И.П. Гладкий

Хоботова Э.Б. Семененко И.Е.

Краткий курс химии для студентов-иностранцев

Все цитаты, цифровой, фактический материал, библиографические сведения проверены. Написание единиц соответствует стандартам.

Утверждено методическим советом университета протокол \mathfrak{N}_{2} от

Ответственная за выпуск доц. Е.И. Позднякова

Учебное издание Краткий курс химии для студентов - иностранцев,

Составители: XОБОТОВА Элина Борисовна СЕМЕНЕНКО Инга Евгеньевна

Ответственный за выпуск Е.И. Позднякова

П	лан 2007, поз	<u>.</u>
Подписано к печ	иати Фор	омат 60х84 1/16
Усл. печ. л Заказ №	Уч-изд. л Тираж договорная.	 экз. Цена

ХНАДУ, 61002, Харьков, ул. Петровского, 25

Подготовлено и отпечатано издательством Харьковского национального автомобильно- дорожного университета