Міністерство освіти і науки України ХНАДУ

Теорія механізмів і машин

"Затверджу	ую′′
проф. Глад	кий І. П.
······································	2006 p

Робоча навчальна програма 3 дисципліни "Прикладна механіка": Частина III "Теорія механізмів і машин"

(за вимогами кредитно-модульної системи)

Робоча програма складена доцентом Момотом	и Д. І.
Рецензент – завідувач кафедри "Деталі машин – проф В. А. І	
Робоча навчальна програма розглянута на з машин і теорії механізмів та машин" ХНАДУ	
Протокол № від ""	_ 2006 p.
Схвалено: Методичною радою автомобільного № від 2006 р.	о факультету, протокол
Декан автомобільного факультету	М. М. Альокса
Методичною радою механічного факультет 2006 р.	у, протокол № від
Декан механічного факультету	І. Г. Кириченко

СТРУКТУРА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ

1. Опис навчальної дисципліни

Характеристика	Характеристика	Характеристика
обсягів підготовки	лекційного потоку	навчального процесу
Загальний обсяг – 2,5	Напрям – 0902	Навчальна дисципліна –
кредити	Інженерна механіка.	нормативна, ґрунтовна.
Всього блоків змістов-	Спеціальності:	Рік підготовки – 2^{i} та 3^{i}
них модулів – 6	- 6.090210, ДВ3;	Семестри навчання – 4 ^й
Всього змістовних	- 6.090211, Колісні та	та 5 ^й .
модулів – 24, до складу	гусеничні транспорт-	Кількість лекційних го-
яких входять 6 зміс-	ні засоби;	дин – 72;
товних модулів само-	- 6.090214, Підйомно-	практичних – 18;
стійної роботи студента	транспортні, будіве-	лабораторних – 18 го-
Усього годин – 135	льні, дорожні, меліо-	дин.
Один блок змістовних	ративні машини і об-	Самостійна робота сту-
модулів	ладнання;	дента – 27 годин.
Один змістовний мо-	- 6.090258, Автомобілі	Індивідуальна робота
дуль – 6	та автомобільне гос-	студента (виконання ку-
Всього аудиторних го-	подарство.	рсового проекту) – 40
дин за тиждень – 3	Освітньо-кваліфікацій-	годин.
(лекцій – 2, практичних	ний рівень – бакалавр.	Види контролю:
або лабораторних - 1)	Кількість навчальних	- поточний (колок-
	груп в потоці – 4-6.	віум, тестування);
		- підсумковий –
		розробка та захист
		курсового проек-
		ту, залік, іспит.

Мета викладання дисципліни: забезпечення знань загальних методів дослідження та проектування схем механізмів, необхідних для створення машин, приладів, автоматичних пристроїв, які б відповідали вимогам ефективності, точності, надійності та економічності.

Перелік знань, вмінь та навичок після викладання дисципліни: знати основні види механізмів та їх кінематичні та динамічні характеристики, розуміти принцип роботи окремих механізмів та їх взаємодію в машині, вміти знаходити кінематичні і динамічні параметри механізмів, що проектуються. Бути знайомим з сучасною технікою вимірювання кінематичних та динамічних параметрів машин.

<u>Суть дисципліни</u>: основи побудови машин і механізмів, кінематичні характеристики механізмів, дослідження руху машин і механізмів, силовий аналіз та зрівноважування механізмів, тертя в машинах і механізмах, віброактивність і віброзахист, синтез важільних механізмів, синтез зубчастих

механізмів, синтез кулачкових механізмів, керування рухом виконавчих органів машин та систем машин.

2. Зміст навчальної програми

Вступ

Програма нормативної дисципліни "Прикладна механіка. Частина ІІІ – теорія механізмів і машин" конкретизує освітньо-професійну програму вищої освіти за професійним напрямком 0902 "Інженерна механіка".

Професійно-орієнтована підготовка на базі цієї нормативної дисципліни забезпечує певне уявлення про інженерну діяльність як специфічний вид праці, який передбачає винахід, проектування, конструювання, експлуатацію технічних засобів.

Дисципліна "Теорія механізмів і машин" забезпечує мінімальну суму знань і вмінь, необхідних для подальшого засвоєння дисципліни даного професійного спрямування.

Програма дисципліни визначає нормативний зміст навчання з дисципліни, встановлює обсяг та рівень засвоєння знань за видами навчальних занять, самостійної роботи студента згідно з вимогами освітньо-професійної програми підготовки бакалаврів.

Після вивчення нормативної дисципліни "Теорія механізмів і машин" студент повинен:

- знати принцип побудови машини і механізму, методи їх кінематичного аналізу та синтезу, метод динамічного дослідження руху машини;
- вміти знаходити кінематичні і динамічні характеристики механізмів, що проектуються;
- мати уявлення про загальні поняття науки і техніки методи досліджень, які застосовуються, напрямки цих досліджень та ін.

Блок змістовних модулів №1

(розділ 1)

Передмова. Структура та кінематика механізмів.

<u>Змістовний модуль №1 (тема 1).</u> Зміст курсу "Теорія механізмів і машин". Перелік основних видів механізмів. Сучасні вимоги до машин. Структура механізмів. Кінематичні пари. Класифікація. Кінематичні ланцюги.

Механізм та машина. Структурні формули механізмів. Класифікація плоских важільних механізмів по Ассуру-Артоболевському.

<u>Змістовний модуль №2 (тема 2).</u> Основи метричного синтезу важільних механізмів. Точка вороття. Мертві положення. Умови існування узагальненого кривошипу в чотирьохланковому механізмі.

Кінематика важільних механізмів. Цілі та задачі кінематичного аналізу. Аналітичний метод та метод діаграм.

Змістовний модуль №3 (тема 3). Метод планів швидкості та прискорень характерних точок важільних механізмів. Кінематичний аналіз механізмів, що виключають групи Ассура 2 класу, 1, 2 та 3 видів. Приклади побудови планів швидкості та прискорень характерних точок окремих механізмів.

<u>Змістовний модуль №4.</u> Самостійна робота студента. Вивчити основні поняття і залежності та виконати самостійне завдання відповідно до змістовних модулів №1, №2 та №3.

Знати відповідь на такі питання.

- 1. Цілі та задачі курсу "Теорія механізмів і машин"
- 2. Визначення понять: машина, механізм, ланка, кінематична пара, елемент кінематичної пари, кінематичний ланцюг.
- 3. Кінематичні пари та їх класифікація
- 4. Кінематичні ланцюги та їх класифікація
- 5. Визначення степенів свободи просторових механізмів. Формула Сомова-Малишева.
- 6. Визначення степенів свободи плоских механізмів. Формула Чебишева
- 7. Метод побудови механізмів. Групи Ассура.
- 8. Рівняння групи Ассура.
- 9. Групи Ассура 2-го класу та їх види. Які механізми можуть бути побудовані з цими групами?
- 10. Методи кінематичного дослідження механізмів.
- 11.Основи метричного синтезу важільних механізмів.
- 12. Метод кінематичних діаграм.
- 13. Метод планів.
- 14. Приклад побудови планів швидкості та прискорень характерних точок шарнірного чотирьохланкового механізму.

- 15. Приклад побудови планів швидкості та прискорень характерних точок кривошипно-повзунного механізму.
- 16. Приклад побудови плану швидкості характерних точок кулісного механізму.
- 17. Приклад побудови плану прискорень характерних точок кулісного механізму.

Перший поточний залік по блоку змістовних модулів №1 (змістовних модулів №1, №2, №2 та №4):

- усне опитування за змістом модулів блоку;
- перевірка та захист кінематичного синтезу важільного механізму згідно з індивідуальним завданням на курсовий проект з дисципліни "Теорія механізмів і машин".

Тематика завдань:

- "Задания и указания к выполнению курсового проекта по теории механизмов и машин", 1993;
- "Методичні вказівки до курсового проекту з дисципліни "Теорія механізмів і машин", 2002.

Блок змістовних модулів №2 (розділ 2) Механізм передач

<u>Змістовний модуль №5 (тема 4</u>). Кінематика просторового універсального шарніру механізму (шарнір Гука). Механізми передач. Типи. Триланкові (одноступінчасті) зубчасті передачі. Класифікація.

Багатоланкові (багатоступінчасті) передачі.

<u>Змістовний модуль №6 (тема 5)</u>. Багатоланкові зубчасті передачі з нерухомими осями валів. Загальне передаточне відношення. Особливості кінематичного аналізу комбінованих багатоступінчастих передач.

<u>Змістовний модуль №7 (тема 6).</u> Планетарні зубчасті передачі. Класифікація. Кінематичний аналіз циліндричних планетарних передач. Методи аналізу. Міжколісний симетричний диференціал.

Кінематичний синтез планетарних зубчастих передач.

Змістовний модуль №8. Самостійна робота студента.

Вивчити основні поняття та залежності відповідно до змістовних модулів N2 та N2 та N23.

Знайти відповіді на такі питання.

- 1. Призначення механізму передачі.
- 2. Що таке передаточне відношення?
- 3. Що означає додатний або від'ємний знак передаточного відношення для механізмів із паралельними осями валів?
- 4. Чим відрізняється поняття "передаточне число" від поняття "передаточне відношення".

- 5. Класифіцируйте види передач, які відомі Вам.
- 6. Які переваги мають зубчасті передачі перед іншими видами перелач?
- 7. Яку форму можуть мати зубчасті колеса при паралельному розташуванні валів?
- 8. Конічні зубчасті передачі. Застосування. Передаточне відношення конічної зубчастої передачі. Геометричні параметри.
- 9. Розвитком якої передачі є черв'ячна передача?
- 10. Які передачі називають планетарними?
- 11. Наведіть схеми найпростіших планетарних передач.
- 12. Сформулюйте метод уявної зупинки водила (метод Вілліса).
- 13. Як визначити передаточне відношення планетарної передачі?
- 14. Як визначити відносні кутові швидкості зубчастих коліс планетарної передачі відносно водила?
- 15.Як визначити графічно передаточне відношення циліндричної планетарної передачі?
- 16. Яке призначення міжколісного диференціала колісної машини?
- 17.У чому полягає кінематичний синтез планетарних передач?
- 18. Сформулюйте умови співвісності, сусідства та зборки планетарної передачі.
- 19. Чому сателіти багатосателітної планетарної передачі необхідно розташувати під рівними кутами?

Другий поточний залік по блоку змістовних модулів №2. (змістовних модулів

№5, №6, №7 та № 8):

- усне опитування за змістом модулів блоку;
- перевірка та захист побудованих планів швидкостей та прискорень характерних точок важільного механізму згідно з індивідуальним завданням на курсовий проект з дисципліни "Теорія механізмів і машин".

Тематика завдань:

- "Задания и указания к выполнению курсового проекта по теории механизмов и машин", 1993;
- "Методичні вказівки до курсового проекту з дисципліни "Теорія механізмів і машин", 2002.

Блок змістовних модулів №3

(розділ 3)

Відомості з теорії зачеплення

Змістовний модуль №9 (тема 7). Основний закон зачеплення. Лінія зачеплення. Евольвентне зачеплення. Загальні відомості. Рівняння евольвенти. Геометрія эвольвентного зубчастого колеса. Геометрія зовнішнього евольвентного зачеплення. Якісні показники эвольвентного зачеплення. Особливості геометрії внутрішнього эвольвентного зачеплення.

<u>Змістовний модуль №10 (тема 8)</u>. Початковий профіль эвольвентного циліндричного зубчастого колеса. Методи нарізування евольвентних профілів. Станочне зачеплення. Початковий виробляючий контур эвольвентного циліндричного зубчатого колеса. Підріз зубців. Мінімальне число зубців z_{min} циліндричного колеса. Поліпшення эвольвентного зачеплення. Синтез щільного эвольвентного зачеплення з зсувом.

<u>Змістовний модуль №11 (тема 9).</u> Особливості зачеплення косозубих циліндричних коліс. Передачі шевронними колесами. Особливості конічного евольвентного зачеплення.

Змістовний модуль №2. Самостійна робота студента.

Вивчити основні поняття та залежності відповідно до змістовних модулів №9, №10 та №11. Знати відповіді на такі питання.

- 1. Які профілі зубців коліс називають спряженими?
- 2. Сформулюйте та доведіть основний закон (теорему) зачеплення.
- 3. Що таке лінія зачеплення?
- 4. Як визначити швидкість ковзання в зачепленні зубців?
- 5. Опишіть геометричні властивості евольвенти.
- 6. Перерахуйте переваги і недоліки эвольвентного зачеплення.
- 7. Наведіть основні геометричні параметри эвольвентного циліндричного колеса.
- 8. Що таке модуль зачеплення?
- 9. Що таке кут зачеплення?
- 10.Опишіть геометричні особливості зовнішнього эвольвентного зачеплення.
- 11.Опишіть геометричні особливості внутрішнього эвольвентного зачеп-
- 12. Наведіть якісні показники эвольвентного зачеплення.
- 13.3образіть відомий Вам початковий контур эвольвентного колеса.
- 14.Охарактеризуйте існуючі методи нарізування евольвентних зубчатих коліс.
- 15.Що таке підріз евольвентних профілів і коли він виникає?
- 16. Мінімальне число зубців эвольвентного колеса. Як його визначити?
- 17. Як можна поліпшити евольвентне зачеплення?
- 18.Як визначити ділильну товщину зуба і ділильну ширину западини зубчастого эвольвентного колеса, що нарізане з зсувом?
- 19. Наведіть основні геометричні залежності эвольвентного циліндричного колеса, що нарізане з зсувом.
- 20.Які основні особливості косозубих і шевронних евольвентних зубчастих коліс?
- 21. Наведіть основні геометричні залежності конічного эвольвентного колеса та конічного эвольвентного зачеплення.

Третій поточний залік по блоку змістовних модулів №3 (змістовних модулів №9, №10, №11, та №12):

• усне опитування за змістом модулів блоку;

- перевірка та захист побудови кінематичних діаграм для характерних точок важільного механізму згідно з індивідуальним завданням на курсовий проект з дисципліни "Теорія механізмів і машин"
- залік за розрахунково-графічну роботу (частина курсового проекту).

Тематика завдань:

- "Задания и указания к выполнению курсового проекта по теории механизмов и машин", 1993;
- "Методичні вказівки до курсового проекту з дисципліни "Теорія механізмів і машин", 2002.

Блок змістовних модулів №4

(розділ 4)

Статика і динаміка машин

Змістовний модуль №13 (тема 10). Задачі статики і динаміки машин. Рух машини під дією заданих сил. Динамічні моделі механізмів. Зведення сил и моментів. Використання теореми Жуковського про жорсткий важіль для визначення зведеної сили. Побудова графіків зведених моментів, роботи зведених моментів опору та рушійних моментів, надлишкової роботи.

Зведення мас і моментів інерції. Розрахунок кінетичної енергії ланок важільного механізму. Побудова графіка зведеного моменту інерції ланок важільного механізму.

Змістовний модуль №14 (тема 11). Побудова діаграми енергомас. Розрахунок моменту інерції маховика за методами Віттенбауера та Мерцалова. Рівняння руху машини в енергетичній та диференціальній формі середня швидкість та коефіцієнт нерівномірності сталого руху. Керування сталим рухом машини.

Змістовний модуль №15 (тема 12). Задачі статики машин. Сили, що діють в машинах. Задачі та метод кінетостатики механізмів. Умова статичної визначеності кінематичних ланцюгів. Силовий аналіз груп Ассура 2-го класу відповідно 1-го, 2-го та 3-го видів. Силовий аналіз початкового механізму.

Змістовний модуль №16. Самостійна робота студента. Вивчити основні поняття та залежності відповідно до змістовних модулів №13, №14 та №15.

Знати відповіді на такі питання.

- 1. Які задачі вирішують за динамічним розрахунком машини?
- 2. Наведіть приклади динамічних моделей машини.
- 3. Що таке зведена сила та зведений момент?
- 4. Як визначають зведену силу за методом Жуковського?
- 5. Що таке зведена маса?
- 6. Що таке зведений момент інерції?
- 7. Як визначити зведену масу та зведений момент інерції механізму?
- 8. Від чого залежить закон руху головного вала машини?
- 9. Наведіть рівняння руху машини в енергетичній формі.
- 10. Наведіть рівняння руху машини в диференціальній формі.
- 11. Які властивості має діаграма енергомас?

12.Як визначити кутову швидкість головного вала машини в довільному положенні за допомогою діаграми енергомас?

Індивідуальна робота студента над курсовим проектом (Лист 1. Проектування основного механізму та вибір маховика):

- визначення розмірів ланок механізму по заданим умовам;
- побудова планів положення механізму та планів прискорень характерних точок механізму через кожні 30° кута повороту кривошипу;
- розрахувати зведені сили та маси для кожного положення механізму;
- побудувати графіки зведених моментів інерції ланок механізму;
- побудувати діаграму енергомає та визначити момент інерції маховика за допомогою метода Вітенбауера.

Четвертий поточний залік по блоку змістовних модулів №4 (змістовних модулів №13, №14, №15 та №16):

- усне опитування за змістом модулів блоку;
- перевірка та захист розрахунків та графічних побудов листа 1 курсового проекту згідно з індивідуальним завданням на курсовий проект з дисципліни ТММ.

Тематика завдань:

- "Задания и указания к выполнению курсового проекта по теории механизмов и машин", 1993;
- "Методичні вказівки до курсового проекту з дисципліни "Теорія механізмів і машин", 2002.

Блок змістовних модулів №5

(розділ 5)

Основи проектування механізмів з вищими кінематичними парами. Тертя в механізмах.

Змістовний модуль №17 (тема 13). Кулачкові механізми.

Загальні відомості. Класифікація кулачкових механізмів, конструктивні рішення.

Кінематичний аналіз кулачкових механізмів.

<u>Змістовний модуль №18 (тема 14)</u>. Кінематичний синтез кулачкових механізмів.

Вибір закону руху веденої ланки кулачкового механізму.

Визначення мінімального радіуса кулачка. Профілювання кулачка в залежності від заданого закону руху веденої ланки.

<u>Змістовний модуль №19 (тема 15)</u>. Урахувати тертя в машинах. Тертя в поступальних та обертових кінематичних парах. Тертя кочення.

Коефіцієнт корисної дії різних механізмів.

Змістовний модуль №20. Самостійна робота студента.

Вивчити основні поняття та виконати завдання відповідно до змістовних модулів №17, №18 та №19 (підготовка до проведення лабораторних робіт). Знати відповіді на такі питання.

- 1. Визначити призначення кулачкових механізмів.
- 2. Наведіть основні типи кулачкових механізмів.
- 3. Виконайте аналіз руху кулачкового механізму при заданому профілі кулачка.
- 4. Перетворення кулачкового механізму.
- 5. Закони руху веденої ланки кулачкового механізму. Підстави для вибору того чи іншого закону руху.
- 6. Задачі кінематичного синтезу кулачкових механізмів.
- 7. Що таке кут тиску в кулачковому механізмі?
- 8. Чому кут тиску має граничну допустиму величину?
- 9. Як знайти мінімальний радіус кулачка?
- 10.Поясніть графічний спосіб визначення мінімального радіуса кулачка механізму з штовхачем, що рухається поступально.
- 11. Наведіть послідовність профілювання кулачка нецентрального кулачкового механізму з голковим штовхачем.
- 12. Яку роль відіграє тертя в машинах?
- 13. Назвіть відомі Вам види тертя.
- 14.Запишіть формулу Амонтона для визначення величини сили тертя ковзання.
- 15.Що таке коефіцієнт тертя ковзання і як його розрахувати.
- 16. Розкрийте фізичну сутність явища тертя кочення.
- 17.Що таке кут тертя та конус тертя?
- 18.Що таке коефіцієнт корисної дії (ККД)? Як визначити ККД послідовного з'єднання механізмів (машин)?
- 19.Визначить в загальному вигляді силу тертя гнучкої нитки по круглому барабану. Проаналізуйте формулу Ейлера.
- 20.Від чого залежить ККД планетарних передач?

Індивідуальна робота студента над курсовим проектом (Лист 2. Силовий розрахунок головного механізму):

- визначити дійсне значення кутової швидкості та кутового прискорення кривошипу в заданому для силового розрахунку положення механізму;
- визначити сили в кінематичних парах механізму; (Лист 3. Побудова кулачкового та планетарного механізмів);
- визначення основних розмірів кулачкового механізму;
- підбір кількості зубів планетарного механізму по заданим умовам.

П'ятий поточний залік по блоку змістовних модулів №5 (змістовних модулів №17, №18, №19 та №20):

Усне опитування, перевірка та захист силового розрахунку головного механізму (лист 2) та побудови кулачкового та планетарного механізмів (лист 3) згідно з індивідуальним завданням на курсовий проект з дисципліни ТММ.

Тематика завдань:

- "Задания и указания к выполнению курсового проекта по теории механизмов и машин", 1993;
- "Методичні вказівки до курсового проекту з дисципліни "Теорія механізмів і машин", 2002.

Блок змістовних модулів №6

(розділ 6)

Зрівноваження мас

<u>Змістовний модуль № 21 (Тема 16)</u>. Зрівноваження мас, що обертаються.

Зрівноваження мас, що обертаються з загальною кутовою швидкістю в одній площині.

Зрівноваження мас, що обертаються в різних площинах з загальною кутовою швидкістю.

<u>Змістовний модуль №22. (Тема 17)</u>. Балансировка деталей та вузлів, що обертаються.

Статична балансировка.

Динамічна балансировка ротора методом трьох проб.

<u>Змістовний модуль №23 (Тема 18)</u>. Зрівноваження мас поступального руху.

Часткове та повне зрівноваження. Механізм Ланчестера.

Статичне зрівноваження важільних механізмів.

Змістовний модуль №24. Самостійна робота студента.

Вивчити основні поняття та виконати завдання відповідно до змістовних модулів №21, №22 та №23 (підготовка до захисту курсового проекту з дисципліни ТММ).

Знати відповіді на такі питання:

- 1. Яка ціль зрівноваження мас ланок?
- 2. Яка відмінність між зрівноваженням мас та балансировкою деталей та вузлів7
- 3. Послідовність зрівноваження мас, що обертаються з загальною кутовою швидкістю в одній плошині.
- 4. Які умови зрівноваження мас, що обертаються з загальною кутовою швидкістю в різних площинах?

- 5. Наведіть умови динамічного зрівноваження обертових мас.
- 6. Чому головна центральна ось інерції обертових мас повинна співпадати з віссю їх обертання?
- 7. Наведіть схему балансирного станка Шитікова.
- 8. Наведіть схему механізму Ланчестера.
- 9. Я к можна зрівноважити маси поршня всього двигуна?
- 10.Що таке статичне зрівноваження важільних механізмів?

Індивідуальна робота студента над курсовим проектом (Лист 4. Проектування зубчастої передачі):

- виконання геометричного розрахунку эвольвентного беззазорного зубчастого зачеплення (колеса нарізані зі зміщенням стандартного рейкового інструменту);
- викреслення зубчастого эвольвентного зачеплення з точкою контакту в полюсі з позначенням основних розмірів;
- визначити та позначити теоретичний та робочий участки лінії зачеплення, активні участки профілю зубів коліс, що знаходяться в зачепленні;
- навести таблицю параметрів коліс та передачі;
- оформлення пояснювальної записки, підготовка до захисту.

Шостий поточний залік по блоку змістовних модулів №6 (змістовних модулів №21, №23 та №24):

Усне опитування по блоку змістовних модулів №6, перевірка та захист проекту зубчастої передачі (лист 4) згідно з індивідуальним завданням на курсовий проект з дисципліни ТММ.

Тематика завдань:

- "Задания и указания к выполнению курсового проекта по теории механизмов и машин", 1993;
- "Методичні вказівки до курсового проекту з дисципліни "Теорія механізмів і машин", 2002.

Підсумковий залік по виконаному курсовому проекту

Додатки A та B – приклади контрольних питань та тестів підсумкового залікового модуля по захисту курсового проекту

3. Розподіл тем занять за годинами та кредитами

$N_{\underline{0}}$	Назва змістовних модулів	Виділений час		
п/п	_			CPC,
		змістовний	годин	годин
		модуль,		
		год/кред		
1	2	3	4	5
1	Змістовний модуль №1 (тема 1)	6/0,112	4	-
	Передмова. Структура та кінемати-			
	ка.			
2	Змістовний модуль №2 (тема 2)	6/0,112	4	-
	Основи метричного синтезу важі-			
	льних механізмів			
3	Змістовний модуль №3 (тема 3)	6/0,112	4	-
	Метод планів			
4	Змістовний модуль №4 СРС	4/0,073	-	4
	Заліковий модуль №1			
5	Змістовний модуль №5 (тема 4)	6/0,112	4	-
	Кінематика просторового універ-			
	сального шарніру. Механізм пере-			
	дачі			
6	Змістовний модуль №6 (тема 5)	6/0,112	4	-
	Багатоланкові зубчасті передачі			
7	Змістовний модуль №7 (тема 6)	6/0,112	4	-
	Планетарні зубчасті передачі			
8	Змістовний модуль №8. СРС	5/0,092	-	5
	Заліковий модуль №2			
9	Змістовний модуль №9 (тема 7)	6/0,112	4	-
	Основний закон зачеплення			
10	Змістовний модуль №10 (тема 8)	6/0,112	4	-
	Методи нарізання зубчастих коліс			
11	Змістовний модуль №4 (тема 9)	6/0,112	4	-
	Особливості зачеплення косозубих			
	циліндричних коліс			

No	Назва змістовних модулів	Виділений час		
п/п	-	Загалом на Лекції,		CPC,
		змістовний	годин	годин
		модуль,		
		год/кред		
12	Змістовний модуль №12. СРС.	5/0,092	-	5
	Заліковий модуль №3			
13	Змістовний модуль №13 (тема 10).	6/0,112	4	-
	Статика і динаміка машин. Задачі.			
14	Змістовний модуль №14 (тема 11).	6/0,112	6	-
	Діаграма енергомас.			
15	Змістовний модуль №15 (тема12).	6/0,112	4	-
	Статика машин. Силовий розраху-			
	нок.			
16	Змістовний модуль №16. СРС.	5/0,092	-	5
	Заліковий модуль №4			
17	Змістовний модуль №17 (тема 13).	6/0,112	4	-
	Кулачкові механізми.			
18	Змістовний модуль №18 (тема 16).	6/0,112	4	-
	Кінематичний синтез кулачкового			
	механізму.			
19	Змістовний модуль №19 (тема 15).	6/0,112	6	-
	Урахування тертя в машинах.			
20	Змістовний модуль №20. СРС	4/0,073	-	4
	Заліковий модуль №5			
21	Змістовний модуль №21 (тема 16).	6/0,112	4	-
	Зрівноваження мас, що обертають-			
	ся.			
22	Змістовний модуль №22 (тема 17).	5/0,092	2	-
	Балансировка деталей та вузлів.			
23	Змістовний модуль №23 (тема 18).	5/0,092	2	-
	Зрівноваження мас поступального			
	pyxy			
24	Змістовний модуль №24. СРС.	4/0,073	_	4
	Заліковий модуль №6			
25	Залік. Захист курсового проекту	1/0,018		
26	Іспит	1/0,018		
27	Всього	135/2,5	72	27

4. Структура залікових модулів

No॒	Зміст навчального матеріалу	Кількість	Обсяг	Форма ко-
п/п		годин	навч.	нтролю
			матеріалу	
1.	Перший поточний заліковий мо-	22	0,40	Усне опи-
	дуль (за змістом модулів 1,2,3,4),			тування,
	захист розрахунків метричного си-			захист
	нтезу важільного механізму згідно			розрахун-
	з завданням на КП			ків
2.	Другий поточний заліковий мо-	23	0,43	
	дуль (за змістом модулів 5,6,7,8),			-,,-
	захист побудованих планів швид-			
	кості та прискорень згідно з за-			
	вданням			
3.	Третій поточний заліковий модуль	23	0,43	-,,-
	(за змістом модулів 9,10,11,12), за-			
	хист РГР			
4.	Четвертий поточний змістовний	23	0,43	-,,-
	модуль (за змістом модулів			
	13,14,15,16), захист 1 листа КП.			
5.	П'ятий поточний змістовний мо-	21	0,39	-,,-
	дуль (за змістом модулів			
	17,18,19,20).			
	Захист 2 і 3 листів КП.			
6.	Підсумковий заліковий модуль (за	21	0,39	Тестування
	змістом 21,22,23,24); захист 4-го			
	листа КП.			
7.	Залік. Захист курсового проекту.	1	0,02	-
8.	Іспит	1	0,02	

- **5. Індивідуальні завдання для СРС** виконання розрахунків згідно з індивідуальним завданням на РГР та курсовий проект з дисципліни ТММ.
- **6.** Види, форми та методи навчання лекції, практичні та лабораторні заняття, консультації, СРС.

7. Система оцінки знань студентів та шкала оцінок

За шкалою ЄСТЗ	За національною	За шкалою встановле-
	шкалою	ною в ХНАДУ для КМС
A	5 (відмінно)	90-100
BC	4 (добре)	75-89
DE	3 (задовільно)	60-74
FX	2 (незадовільно)	35-59
	з можливістю повторно-	
	го складання	
F	2 (незадовільно з обо-	1-34
	в'язковим вивченням	
	курсу)	

8. Методичне забезпечення

- Методичні вказівки по всім розділам курсу.
- Матеріали Університетського та кафедрального навчальних порталів.
- Завдання на курсовий проект з дисципліни "Теорія механізмів і машин".

9. Література, що рекомендована для СРС.

9.1. Основна

- Артоболевский И. И. Теория механизмов и машин, М,: Наука, 1988.
- Теория механизмов и машин под редакцией Фролова К. В. М.: Выс-шая школа, 1987.
- Кожевников С. Н. Теорія механизмов и машин М.: Машиностроение, 1973.
- Левитская О. Н., Левитский Н. И. Курс теории мезханизмов и машин, М.: Высшая школа, 1983.

9.2 Допоміжна

- Попов С. А. Курсовое проектирование по теории механизмов и машин М.: высшая школа, 1986.
- Гречко Л. П. Важільні механізми, передачі і зачеплення. Харків: ХНАДУ, 2000.
- Гречко Л. П. Синтез механизмов и машин, Харьков: ХНАДУ, 1999.
- Гречко Л. П., Перегон В. А., Воропай О. В Методичні вказівки до курсового проекту з ТММ, Харків: ХГАДТУ, 2000.
- Гречко Л. П., Перегон В. А. Методичні вказівки до виконання розрахунково-графічної роботи з ТММ, Харків: ХГАДТУ, 2000.