

ДСТУ 3651.2-97

ГОСУДАРСТВЕННЫЙ СТАНДАРТ УКРАИНЫ

Метрология Единицы физических величин

ФИЗИЧЕСКИЕ ПОСТОЯННЫЕ И ХАРАКТЕРИСТИЧЕСКИЕ ЧИСЛА

Основные положения, обозначения, наименования и значения

Издание официальное

Киев ГОССТАНДАРТ УКРАИНЫ 1998

ПРЕДИСЛОВИЕ

1 РАЗРАБОТАН Харьковским государственным политехническим университетом; Государственным научно-исследовательским институтом «Система»; Украинским научно-исследовательским институтом стандартизации, сертификации и информатики

ВНЕСЕН Харьковским государственным политехническим университетом

2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ приказом Госстандарта Украины от 9 октября 1997 г. № 620

З Этот стандарт соответствует:

The 1986 Adjustment of the Fundamental Physical Constants. A Report of the CODATA Task Group on Fundamental Constants // CODATA Bulletin № 63, 1986

ISO 31: 1992 Quantities and units

Part 0: General principles

Part 12: Characteristic numbers

Уровень соответствия - неэквивалентный (neq)

4 ВВЕДЕН ВПЕРВЫЕ

5 РАЗРАБОТЧИКИ: В. Базакуца, д-р физ.-мат. наук (руководитель разработки);

О. Величко, канд. техн. наук (руководитель разработки);

О. Винниченко; В. Владимиров, д-р техн. наук (руководитель разработки);

Л. Коваль; Е. Козырь; И. Кугасян; Е. Луковникова;

А. Сук, канд. физ.-мат. наук

СОДЕРЖАНИЕ

		C.
1	Область применения	1
2	Нормативные ссылки	2
3	Термины и определения	2
4	Основные положения	2
	Приложение А Фундаментальные физические постоянные	4
	Приложение Б Характеристические числа	8
	Приложение В Перечень использованных международных стандартов	2

ВВЕДЕНИЕ

Группу стандартов под общим наименованием «Метрология. Единицы физических величин» разработано на основании международных стандартов ISO 31:1992 и ISO 1000:1992.

Эта группа стандартов состоит из трех документов с такими наименованиями:

ДСТУ 3651.0-97 Метрология. Единицы физических величин. Основные единицы физических величин Международной системы единиц. Основные положения, наименования и обозначения;

ДСТУ 3651.1-97 Метрология. Единицы физических величин. Производные единицы физических величин Международной системы единиц и внесистемные единицы. Основные понятия, наименования и обозначения;

ДСТУ 3651.2-97 Метрология. Единицы физических величин. Физические постоянные и характеристические числа. Основные положения, обозначения, наименования и значения.

Уровень соответствия стандартов этой группы соответствующим международным стандартам — неэквивалентный (neq), поскольку на основании международных стандартов разработано национальные стандарты другой структуры. Приведенные в ДСТУ 3651 физические величины, единицы физических величин, их наименования, обозначения и правила применения соответствуют аналогичным требованиям международных стандартов.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ УКРАИНЫ

МЕТРОЛОГИЯ ЕДИНИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН

ФИЗИЧЕСКИЕ ПОСТОЯННЫЕ И ХАРАКТЕРИСТИЧЕСКИЕ ЧИСЛА

Основные положения, обозначения, наименования и значения

МЕТРОЛОГІЯ ОДИНИЦІ ФІЗИЧНИХ ВЕЛИЧИН

ФІЗИЧНІ СТАЛІ ТА ХАРАКТЕРИСТИЧНІ ЧИСЛА

Основні положення, позначення, назви та значення

METROLOGY
UNITS OF PHYSICAL QUANTITIES

PHYSICAL CONSTANTS AND CHARACTERISTIC NUMBERS

General principles, symbols, names and values

Дата введения 1999-01-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

- 1.1 Настоящий стандарт устанавливает физические постоянные, подлежащие обязательному применению в Украине, а также их обозначения, наименования и значения в Международной системе единиц (SI).
- 1.2 Стандарт рекомендует к применению в Украине наименования и обозначения наиболее распространенных характеристических чисел.
- 1.3 Наименования и обозначения физических постоянных и характеристических чисел, а также значения основных физических постоянных, регламентированные настоящим стандартом, следует использовать в нормативных документах, во всех видах разрабатываемой или пересматриваемой документации, в научно-технических публикациях, учебной и справочной литературе, в учебном процессе всех учебных заведений.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте содержатся ссылки на:

ДСТУ 2681-94 Метрология. Термины и определения

ДСТУ 3651.0-97 Метрология. Единицы физических величин. Международной системы единиц. Основные положения, наименования и обозначения

ДСТУ 3651.1-97 Метрология. Единицы физических величин. Производные единицы физических величин Международной системы единиц и внесистемные единицы. Основные понятия, наименования и обозначения.

3 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

- 3.1 В настоящем стандарте использованы термины, установленные ДСТУ 2681, а именно: (физическая) величина, размерность (физической) величины, размерная (физическая) величина, безразмерная (физическая) величина, единица (физической) величины, система единиц (физических величин), значение (физической) величины, числовое значение (физической) величины, Международная система единиц.
 - 3.2 Также использованы нижеприведенные термины.
- 3.2.1 Физическая постоянная физическая величина, имеющая неизменное значение при определенных обстоятельствах в выбранной системе единиц.
- 3.2.2 **Фундаментальная физическая постоянная** физическая постоянная, значение которой, определенное экспериментально в выбранной системе единиц, содержит информацию о наиболее общих (фундаментальных) свойствах материи и остается неизменным при любых условиях.
- 3.2.3 **Характеристическое число** безразмерная комбинация физических величин, которая возникает в функциональных зависимостях, отражающих физические факты, не зависящие от выбора системы единиц.

4 ОСНОВНЫЕ ПОЛОЖЕНИЯ

4.1 При преобразовании эмпирических соотношений для числовых значений величин в уравнения для значений физических величин в выбранной системе единиц в последних появляются коэффициенты, которые имеют различное происхождение.

Например, коэффициент пропорциональности в уравнении для физических величин, значение которого не зависит от принятых определений физических величин и не зависит от выбора системы единиц, — это числовой множитель, а коэффициент пропорциональности, который зависит от выбора системы единиц, входящих в данное уравнение, — это либо физическая постоянная, либо произведение нескольких физических постоянных и числового множителя.

4.1.1 Следует различать фундаментальные физические постоянные и постоянные вещества или системы. Последние являются физическими величинами, которые при определенных условиях сохраняют неизменными свои значения в выбранной системе единиц только для некоторого вещества или системы.

Примеры

Соотношение между энергией W кванта электромагнитного поля и его частотой v определяется формулой Планка W = hv, где h — фундаментальная постоянная Планка.

Закон радиоактивного распада $N = N_0 \exp(-\lambda t)$, где N — число атомов некоторого радиоактивного элемента, не распавшихся через время t, N_0 — число этих атомов в начальный момент (t = 0), — содержит постоянную радиоактивного распада λ , которая является постоянной вещества — рассматриваемого радиоактивного элемента.

Характеристика ионной кристаллической решетки, определяющая электростатическую энергию взаимодействия, приходящуюся на пару ионов, — постоянная Маделунга α, — является постоянной системы (определенного кристалла).

- 4.1.2 В Приложении А приведены фундаментальные физические постоянные, значения которых регламентированы международно согласованным документом. При этом использованы определения основных и производных единиц SI, приведенные в ДСТУ 3651.0 и ДСТУ 3651.1.
- 4.2 Любое физическое соотношение между размерными физическими величинами можно сформулировать как соотношение между безразмерными величинами. При этом в безразмерном соотношении возникают безразмерные комбинации физических величин характеристические числа, которые не зависят от выбора системы единиц и служат критерием подобия процессов или систем. Характеристические числа вместе с физическими постоянными, свойственными рассматриваемому процессу, полностью определяют этот процесс.
- 4.2.1 Два физических процесса следует считать подобными, если их описывают одинаковые безразмерные соотношения, а все характеристические числа, свойственные одному процессу, равны характеристическим числам второго процесса.
- 4.2.2 Произвольная комбинация характеристических чисел образует новое характеристическое число и может также служить критерием подобия.
- 4.2.3 В Приложении Б приведены характеристические числа, используемые при исследовании явлений переноса, то есть необратимых процессов переноса массы, энергии, импульса, заряда, имеющие место в среде вследствие движения и взаимодействия микрочастиц.
- 4.2.4 Обозначение характеристического числа печатается наклонным шрифтом (курсивом) и состоит из двух латинских букв, первая из которых заглавная.

Пример

Число Рейнольдса Re.

В случае, когда характеристическое число представляет собой множитель в произведении, его обозначение следует отделять от других обозначений знаком умножения, промежутком или скобками.

ПРИЛОЖЕНИЕ А (обязательное)

ФУНДАМЕНТАЛЬНЫЕ ФИЗИЧЕСКИЕ ПОСТОЯННЫЕ

- А.1 Приведенные ниже в таблице А.1 согласованные значения фундаментальных физических постоянных вычислены на основании измерений отдельных постоянных или их комбинаций в 12 странах мира. При последнем согласовании (XV Генеральная Ассамблея КО-ДАТА, 1986 р.) использовались согласованные размеры поддерживаемых единиц, значения ряда физических констант и переводные энергетические множители.
- А.2 Данные таблицы совпадают с данными единственного международно согласованного документа, систематизирующего значения фундаментальных физических постоянных и действительного до тех пор, пока не будет произведены пересмотр постоянных и процедура нового согласования.
- А.З В столбце 3 «Определяющее уравнение» таблицы А.1 приведены соотношения постоянной с другими постоянными, если они существуют.

Если в столбце 4 «Значение величины» таблицы А.1 приведено точное числовое значение постоянной, то в последнем столбце 5 «Относительная погрешность» указано «точно». В других случаях в столбце 4 после среднего значения постоянной и символа «±» приведена среднеквадратичная погрешность, а в столбце 5 таблицы — относительная среднеквадратичная погрешность.

Таблица А.1 — Фундаментальные физические постоянные

Наименовани е величины	Обозна- чения	Определяющее уравнение	Значение величины	Относительная погрешность, 10 ⁻⁶
		Фундамент	пальные константы	1
Скорость света в вакууме	c	_	299 792 458 м⋅с	точно
Магнитная постоянная	μο	_	$4\pi 10^{-7} \Gamma_{\text{H}/\text{M}} = 12,566 \ 370 \ 614 \cdot 10^{-7}$ $\Gamma_{\text{H}/\text{M}}$	точно
Электрическая постоянная	٤0	$(\mu_0 c^2)^{-1}$	8,854 187 817 ·10 ⁻¹² Ф·м ⁻¹	ОНРОТ
Гравитационная постоянная	G	_	(6,672 59 ± 0,000 85)·10 ⁻¹¹ м ³ ·кг ⁻¹ ·с ⁻²	128
Постоянная Планка	h	~	(6,626 0755 ± 0,000 0040)·10 ⁻³⁴ Дж·с	0,60
Постоянная Дирака	ħ	h/2π	(1,054 572 66 ± 0,000 000 63)·10 ⁻³⁴ Дж·с	0,60
Планковская масса	$m_{_{\mathrm{p}}}$	$(\hbar c/G)^{1/2}$	(2,176 71 ± 0,000 14)·10 ⁻⁸ кг	64
Планковская длина	l _p	$\hbar/m_p c =$ $= (\hbar G/c^3)^{1/2}$	(1,616 05 ± 0,000 10)·10 ⁻³⁵ м	64
Планковское время	$t_{_{\mathrm{p}}}$	$l_p/c =$ $= (\hbar G/c^3)^{1/2}$	$(5,390\ 56\ \pm0,000\ 34)\cdot10^{-44}\ c$	64
		Электрома	гнитные константы	
Элементарный заряд	e	-	$(1,602\ 177\ 33\ \pm0,000\ 000\ 49)\cdot10^{-19}\ K\pi$	0,30
Квант магнитного потока	Φ,	h/2e	(2,067 834 61 ± 0,000 000 61)·10 ⁻¹⁵ B6	0,30
Отношение Джозефсона	$r_{ m D}$	2e/h	$(4,835\ 9767\ \pm\ 0,000\ 0014)\cdot 10^{14}\ \Gamma_{\Pi}\cdot B^{-1}$	0,30

Продолжение таблицы А.1

Наименование величины	Обозна- чения	Определяющее уравнение	Значение величины	Относительная погрешность, 10 ⁻⁶
Квантовая проводимость Холла	$\sigma_{\rm H}$	e^2/h	(3,874 046 14 ± 0,000 000 17) ·10 ⁻⁵ C _M	0,045
Квантовое сопротивле- ние Холла	R _H	$h/e^2 = \mu_0 c/2\alpha$	25 812,8056 ± 0,0012 Ом	0,045
Магнетон Бора	μ_{B}	eħ/2m _e	(9,274 0154 ±0,000 0031)·10 ⁻²⁴ Дж·Тл ⁻¹	0,34
Ядерный магнетон	μ_{N}	eħ/2m _p	(5,050 7866 ± 0,000 0017)·10 ⁻²⁷ Дж·Тл ⁻¹	0,34
		Атомные	константы	
Постоянная тонкой структуры	α	$\mu_0 ce^2/2h$	(7,297 353 08 ± 0,000 000 33)·10 ⁻³	0,045
Постоянная Ридберга	R.	$m_e ca^2/2h$	10 973 731,534 ± 0,013 m ⁻¹	0,0012
Боровский радиус	a _o	α/4πR_	(0,529 177 249 ± 0,000 000 024)·10 ⁻¹⁰ M	0,045
Энергия Хартри	E _h	$e^2/4\pi\epsilon_0 a_0 =$ $= 2R_h c$	(4,359 7482 ± 0,000 0026)·10 ⁻¹⁸ Дж	0,60
Квант циркуляции	_	$h/2m_e$	(3,636 948 07 ± 0,000 000 33)·10 ⁻⁴ m ² ·c ⁻¹	0,089
		Эле	ектрон	<u></u>
Масса покоя электрона	m _e		(9,109 3897 ±0,000 0054)·10 ⁻³¹ кг	0,59
Отношение заряда электрона к его массе		-e/m _e	(-1,758 819 62 ±0,000 000 53)·10 ¹¹ Кл·кг ⁻¹	0,30
Молярная масса электрона	M(e)	_	(5,485 799 03 ± 0,000 000 13)·10 ⁻⁷ кг/моль	0,023
Комптоновская длина волны электрона	$\lambda_{\rm c}$	$h/m_{\epsilon}c$	$(2,426\ 310\ 58\ \pm0,000\ 000\ 22)\cdot10^{-12}\ M$	0,089
Классический радиус электрона	r _e	a^2a_0	$(2,817 940 92 \pm 0,000 000 38) \cdot 10^{-15} \text{ M}$	0,13
Томсоновское сечение рассеяния	σ,	$(8p/3)r_{\rm e}^2$	(0,665 246 16 ± 0,000 000 18)·10 ⁻²⁸ м ²	0,27
Магнитный момент электрона	μ_{e}	_	(928,477 01 ± 0,000 31)·10 ⁻²⁶ Дж•Тл ⁻¹	0,34
Аномалия магнитного момента электрона	a _e	μ _ε /μ _B -1	$(1,159 652 193 \pm 0,000 000 010) \cdot 10^{-3}$	0,0086
g-фактор свободного электрона	g _e	2(1+a _e)	2,002 319 304 386 ± 0,000 000 000 020	1.10-2
		M	(100)	
Масса покоя мюона	m _a		(1,883 5327 ± 0,000 0011)·10 ⁻²⁸ KF	0,61

Продолжение таблицы А.1

Наименование величины	Обозна- чения	Определяющее уравнение	Эначение величины	Относительна погрещность, 10 ⁻⁶
Молярная масса мюона	<i>Μ</i> (μ)	_	(1,134 289 13 ± 0,000 000 17)·10 ⁻⁴ кг/моль	0,15
Магнитный момент мюона	μ_{μ}	_	(4,490 4514 ± 0,000 0015)·10 ⁻²⁶ Дж·Тл ⁻¹	0,33
Аномалия магнитного момента мюона	a_{μ}	$[\mu_{\mu}/(e\hbar/2m_{\mu})]-1$	$(1,165\ 9230\ \pm\ 0,000\ 0084)\cdot 10^{-3}$	7,2
g-фактор свободного мюона	S m	2(1+a _µ)	2,002 331 846 ± 0,000 000 017	0,0084
	· · · · · ·	п	ротон	
Масса покоя протона	$m_{_{ m p}}$	_	(1,672 6231 ± 0,000 0010)·10 ⁻²⁷ кг	0,59
Отношение заряда протона к его массе		e/m _p	(9,578 8309 ± 0,000 0029)·10 ⁷ Кл·кг ⁻¹	0,30
Молярная масса протона	<i>M</i> (p)	_	(1,007 276 470 ± 0,000 000 012)·10 ⁻³ кг/моль	0,012
Комптоновская длина волны протона	$l_{\mathrm{C,p}}$	$h/m_{ m p}c$	(1,321 410 02 ± 0,000 000 12)·10 ⁻¹⁵ M	0,089
Магнитный момент протона	μ_{p}	~	(1,410 607 61 ±0,000 000 47)·10 ⁻²⁶ Дж·Тл ⁻¹	0,34
Гиромагнитное отношение протона	Ϋ́p	_	$(26.752,2128 \pm 0,0081) \cdot 10^{4} c^{-1} \cdot T\pi^{-1}$	0,30
		He	ейтрон	<u> </u>
Масса покоя нейтрона	$m_{_{ m B}}$	-	(1,674 9286 ± 0,000 0010)·10 ⁻²⁷ кг	0,59
Молярная масса нейтрона	M(n)	_	(1,008 664 904 ± 0,000 000 014)·10 ⁻³ кг/моль	0,014
Комптоновская длина волны нейтрона	$l_{\mathrm{C,n}}$	h/m _a c	(1,319 591 10 ± 0,000 000 12)·10 ⁻¹⁵ м	0,089
Магнитный момент нейтрона*	μ_n	_	(0,966 237 07 ± 0,000 000 40)·10 ⁻²⁶ Дж·Тл ⁻¹	0,41
		Де	ейтрон	· L
Масса покоя дейтрона	асса покоя дейтрона $m_{\rm d}$ — (3,343 5860 \pm 0,000 0020) \cdot 10 ⁻²⁷ кг		0,59	
Молярная масса дейтрона	<i>M</i> (d)	_	(2,013 553 214 ± 0,000 000 024)·10 ⁻³ кг/моль	0,012
		Физико-химич	веские константы	· · · · · · · · · · · · · · · · · · · ·
Постоянная Авогадро	N _A	-	(6,022 1367 ± 0,000 0036)·10 ²³ моль ⁻¹	0,59
Молярная постоянная Планка		N _A h	(3,990 313 23 ± 0,000 000 36)·10 ⁻¹⁰ Дж·с·моль ⁻¹	0,089
	L		<u> </u>	<u> </u>

Окончание таблицы А.1

Наименование величины	Обозна- чения	Определяющее уравнение	Значение величины	Относительная погрещность, 10 ⁻⁴
Атомная единица массы (унифицированная)	а.е.м.	m(12C)/12	(1,660 5402 ± 0,000 0010)·10- 27 KF	0,59
Постоянная Фарадея	F	N _A e	96 485,309 ± 0,029 Кл·моль -1	0,30
Универсальная (моляр- ная) газовая постоянная	R		8,314 510 ± 0,000 070 Дж·моль ⁻¹ ·К ⁻¹	8,4
Постоянная Больцмана	k	R/N _A	(1,380 658 ± 0,000 012)·10 ⁻²³ Дж·К ⁻¹	8,5
Молярный объем идеального газа при нормальных условиях ($T = 273.15 \text{ K}$, $p = 101325 \text{ Па}$)	V_{m}	RT/p	(22,414 10 ±0,000 19)·10 ⁻³ м ³ /моль	8,4
Постоянная Лошмидта	n_0	$N_{\rm A}/V_{\rm m}$	(2,686 763 ±0,000 023)·10 ²⁵ M ⁻³	8,5
Постоянная Стефана- Больцмана	σ	$(p^2/60)k^4/$ (\hbar^3c^2)	(5,670 51 ±0,000 19)·10 ⁻⁸ B _{T·M⁻²·K⁻⁴}	34
Перая постоянная излучения	C ₁	2phc²	(3,741 7749 ±0,000 0022)·10 ⁻¹⁶ Br·м ⁻²	0,60
Вторая постоянная излучения	c ₂	hc/k	0,014 387 69 ±0,000 000 12 м·К	8,4
Постоянная в законе смещения Вина	ь	c₂/C**	(2,897 756 ±0,000 024)·10 ⁻³ м·K	8,4

[•] Здесь приведен скалярный момент нейтрона. Магнитный диполь нейтрона имеет направление, противоположное направлению магнитного диполя протона и соответствует диполю, обусловленному вращением распределенного отрицательного заряда. •• Числовая постоянная C=4.965 114 23... является корнем трансцедентного уравнения $x=5(1-e^{-x})$.

ПРИЛОЖЕНИЕ Б (рекомендательное)

ХАРАКТЕРИСТИЧЕСКИЕ ЧИСЛА

В таблицах Б.1-Б.5 приведены наиболее применяемые характеристические числа, которые служат критериями подобия физических систем, где имеют место процессы переноса.

Все характеристические числа являются безразмерными величинами и в качестве единицы имеют число 1, поэтому их размерности и единицы не приводятся.

Обозначения физических величин, использованных для определения характеристических чисел в каждой таблице, приведены непосредственно после нее.

Таблица Б.1 — Характеристические числа: перенос импульса

Обозначение	Наименование	Определение
Re	Число Рейнольдса	$Re = \frac{\rho vl}{\eta} = \frac{vl}{\nu}$
Eu	Число Эйлера	$Eu = \frac{\Delta p}{\rho v^2}$
Fr	Число Фруда 1)	$Fr = \frac{v}{\sqrt{lg}}$
Gr	Число Грасгофа ²⁾	$Gr = \frac{l^3 g \alpha \Delta T}{v^2}$
We	Число Вебера	$We = \frac{\rho v^2 l}{\sigma}$
Ма	Число Маха	$Ma = \frac{v}{c}$
Kn	Число Кнудсена	$Kn = \frac{\lambda}{l}$
Sr	Число Струхала	$Sr = \frac{lf}{v}$

¹⁾ Число Фруда иногда називают числом Рича.

$$\frac{2)}{\rho} = \frac{\Delta \rho}{\rho} = \alpha \Delta T$$

Примечание. Обозначения, использованные в определениях:

- характеристическая длина;
- и характеристическая скорость;
- ΔT характеристическая разность температур;
- Δp разность давлений;
- р плотность;
- η динамическая вязкость;
- v кинематическая вязкость;
- с коэффициент поверхностного натяжения;
- ускорение свободного падения;
- α объемный коэффициент расширения;
- λ средняя длина свободного пробега;
- тарактеристическая частота;
- c скорость звука.

Таблица Б.2 - Характеристические числа: теплоперенос

Обозначение	Наименование	Определение
Fo	Число Фурье	$Fo = \frac{\lambda t}{c_p \rho l^2} = \frac{at}{l^2}$
Pe	Число Пекле ¹⁾	$Pe = \frac{\rho c_p v l}{\lambda} = \frac{v l}{a}$
Ra	Число Рэлея ²⁾	$Ra = \frac{l^3 \rho^2 c_p g \alpha \Delta T}{\eta \lambda} = \frac{l^3 g \alpha \Delta T}{va}$
Nu	Число Нуссельта ³⁾	$Nu = \frac{Kl}{\lambda}$
St	Число Стентона ⁴⁾	$St = \frac{K}{\rho vc_p}$

¹⁾ $Pe = Re \cdot Pr$

4) St=Nu/Pe; $j=St Pr^{2/3}$ — коэффициент теплопереноса

Примечание. Обозначения, использованные в определениях:

- l характеристическая длина;
- v характеристическая скорость;
- t -характеристическое время;
- ΔT характеристическая разность температур;
- g ускорение свободного падения;
- р плотность;
- п динамическая вязкость;
- кинематическая вязкость;
- с, массовая теплоемкость при постоянном давлении;
- α объемный коэффициент расширения;
- λ коэффициент теплопроводности;
- α коэффициент термической диффузии;
- К -коэффициент теплопереноса.

²⁾ $Ra = Gr \cdot Pr$

³⁾ Наименование «число Био» для этого числа применяется тогда, когда число Нуссельта зарезервировано для характеристики конвективного теплопереноса

Таблица Б.3 — Характеристические числа: характеристики вещества

Обозначение	Наименование	Определение
Pr	Число Прандтля	$Pr = \frac{\eta c_{\rm p}}{\lambda} = \frac{v}{a}$
Sc	Число Шмидта	$Sc = \frac{\eta}{\rho D} = \frac{\nu}{D}$
Le	Число Льюиса ¹⁾	$Le = \frac{\lambda}{\rho c_{\rm p} D} = \frac{a}{D}$

¹⁾ Le = Sc/Pr

Примечание. Обозначения, использованные в определениях:

- р плотность;
- η динамическая вязкость;
- v кинематическая вязкость;
- D -коэффициент диффузии;
- $c_{\mathfrak{p}}$ массовая теплоемкость при постоянном давлении; α объемный коэффициент расширения;
- коэффициент теплопроводности;
- коэффициент термической диффузии.

Таблица Б.4 — Характеристические числа: массоперенос в бинарных смесях

Обозначение	Наименование	Определение
Fo*	Число Фурье для массопереноса ¹⁾	$Fo^* = \frac{Dt}{l^2}$
Pe*	Число Пекле для массопереноса ²⁾	$Pe^* = \frac{vl}{D}$
Gr*	Число Грасгофа для массопереноса	$Gr^* = \frac{l^3 g \beta \Delta x}{v^2}$
Nu*	Число Нуссельта для массопереноса 4)	$Nu^* = \frac{kl}{\rho D}$
St*	Число Стентона для массопереноса ⁵⁾	$St^* = \frac{k}{\rho v}$

- 1) $Fo^* = Fo/Le$.
- 2) $Pe^* = Re \cdot Sc = Pe \cdot Le$.
- 3) $-\frac{\Delta\rho}{} = \alpha\Delta T + \beta\Delta x$.
- 4) Иногда называется числом Шервуда, Sh.
- 5) $St^* = Nu^*/Pe^*$; $j_* = St^* \cdot Sc^{2/3}$ коэффициент массопереноса

Примечание. Обозначения, использованные в определениях:

- г. карактеристическая длина;
- v характеристическая скорость;
- характеристическое время;

Окончание таблицы Б.4

 ΔT — характеристическая разность температур;

 Δx — характеристическая разность количества вещества;

g — ускорение свободного падения;

о – плотность;

 β — кинематическая вязкость; β — β = - $(1/\rho)(\partial \rho/\partial x)_{T,p}$;

D - коэффициент диффузии;

коэффициент массопереноса;

а - объемный коэффициент расширения.

Таблица Б.5 — Характеристические числа: магнитогидродинамика

Обозначение	Наименование	Определение		
Rm	Магнитное число Рейнольдса	$Rm = \frac{vl}{(1/\mu\sigma)} = v\mu\sigma l$		
Al	Число Альфвена	$Al = \frac{v}{[B/(\rho\mu)^{1/2}]} = \frac{v}{v_A}$		
На	Число Хартмана	$Ha = Bl \left(\frac{\sigma}{\rho \nu}\right)^{1/2}$		
$Co_{\mathfrak{t}}$	(первое) число Каулинга ¹⁾	$Co_1 = \frac{B^2l\sigma}{\rho v}$		
Со	(второе) число Каулинга ²⁾	$Co = \frac{B^2}{\mu \rho v^2}$		

1) $Co_1 = Ha^2/Re = Co \cdot Rm$ 2) $Co = (v_A/v)^2 = Al^{-2}$

Примечание. Обозначения, использованные в определениях:

 ρ - плотность;

характеристическая длина;

v — характеристическая скорость;

и — кинематическая вязкость;

— магнитная проницаемость;

B — магнитная индукция;

σ – электрическая проводимость;

 $v_A =$ альфвеновская скорость, $v_A = B/(\rho \mu)^{1/2}$.

приложение в (справочное)

ПЕРЕЧЕНЬ ИСПОЛЬЗОВАННЫХ МЕЖДУНАРОДНЫХ СТАНДАРТОВ

- 1 CODATA Bulletin №63, 1986
- 2 ISO 31:1992 Quantities and units
 - Part 0: General principles
 - Part 12: Characteristic numbers

01.060; 17.020

T80

Ключевые слова: Международная система единиц, физическая постоянная, характеристическое число